Joko Widiyanto, S.Pd, M.Pd

SPSS For Windows

Untuk Analisis Data Statistik dan Penelitian

LABORATORIUM KOMPUTER FKIP UNIVERSITAS MUHAMMADIYAH SURAKARTA

Judul: SPSS For Windows Untuk Analisis Data Statistik dan Penelitian

Penulis: Joko Widiyanto, S.Pd., M.Pd. Editor: Dra. Titik Asmawati, M.Si. Miftakhul Huda, M.Pd. Perancang Sampul: Catur Budi S., S.Pd.

> Halaman: vii, 117 ISBN: 978 602 8649 711

.

.

Diterbitkan oleh: Laboratorium Komputer FKIP Universitas Muhammadiyah Surakarta 2014

DAFTAR ISI

KATA PE	NGANTAR	ш
DAFTAR	ISI	vi
BABI	: PENDAHULUAN	1
	Penelitian	2
	Data Statistik	2
	Variabel	5
	Populasi dan Sampel	5
	Analisis Data	5
	Metode Analisis Data	6
¥2	Hipotesis	6
	Signifikansi	7
	Probabilitas	8
	Degree of Freedom	8
	Kurva Normal	8
BAB II	: ENTRI DATA	9
	Pengantar SPSS	10
	Cara Kerja SPSS	10
	Membuka Program SPSS 15.0	11
	Input/Entri Data	13
	Menyimpan Data	20
	Mengedit Data	20
	Mengurutkan Data	20
BAB III	: ANALISIS DESKRIPTIF	21
	Pengertian Analisis Deskriptif	22
	Analisis Deskriptif dengan SPSS 15.0	23

.

Pentingnya Uji Validitas dan Reliabilitas 30 Uji Validitas 32 Uji Reliabilitas 41 BAB V : ANALISIS UJI ASUMSI DASAR 45 Uji Normalitas 46 Uji Homogenitas 50 Uji Linearitas 50 Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 Uji Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 Uji Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
Uji Validitas 32 Uji Reliabilitas 41 BAB V : ANALISIS UJI ASUMSI DASAR 45 Uji Normalitas 46 Uji Homogenitas 50 Uji Linearitas 50 Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 Uji Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 Uji Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
Uji Reliabilitas 41 BAB V : ANALISIS UJI ASUMSI DASAR 45 Uji Normalitas 46 Uji Homogenitas 50 Uji Linearitas 52 Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 UJi Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 UJi Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 UJi Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
BAB V : ANALISIS UJI ASUMSI DASAR 45 Uji Normalitas 46 Uji Homogenitas 50 Uji Linearitas 50 Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 Uji Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 Uji Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
Uji Normalitas 46 Uji Homogenitas 50 Uji Linearitas 52 Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 UJi Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 UJi Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 UJi Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
Uji Homogenitas 50 Uji Linearitas 52 Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 Uji Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 Uji Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
Uji Linearitas 52 Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 Uji Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 Uji Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
Uji Keberartian 54 BAB VI : ANALISIS UJI KOMPARASI 55 UJi Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 UJi Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired Sample T Test) 61 UJi Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
BAB VI : ANALISIS UJI KOMPARASI 55 Uji Perbedaan Rata-Rata Satu Sampel (One Sample T Test) 57 Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired 57 Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (Paired 61 Uji Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan 61
Uji Perbedaan Rata-Rata Satu Sampel (<i>One Sample T Test</i>)
Uji Perbedaan Rata-Rata Dua Sampel Berpasangan (<i>Paired Sample T Test</i>)
Sample T Test)
Uji Perbedaan Rata-Rata Dua Sampel Tidak Berpasangan
(Independen Sample T Test)
Uji Analisis Varians Satu Jalan (One Way ANOVA)
Uji Analisis Varians Dua Jalan (Two Way ANOVA)
BAB VII : ANALISIS UJI KORELASI DAN REGRESI
Analisis Korelasi 92
Analisis Regresi Linear Sederhana
Analisis Regresi Linear Ganda 103
DAFTAR PUSTAKA 113
LAMPIRAN 114

.

ð ----

1.4

Ŗ

Ċ,

1

Sejalan dengan perkembangan ilmu pengetahuan dan teknologi maka peranan statistikpun sangat besar. Statistik selain menyajikan sekumpulan data, statistik juga dipakai untuk melakukan berbagai analisis terhadap data, seperti melakukan peramalan (*forecasting*), melakukan berbagai hipotesis dan lain sebagainya.

Sebelum menjalankan SPSS sebagai alat bantu untuk menganalisis data, perlu diketahui dahulu dasar-dasar statistik atau istilah-istilah yang sering digunakan dalam statistik.

Penelitian

Penelitian adalah aktivitas atau kegiatan yang dilakukan secara sistematis, berencana dan mengikuti konsep ilmiah untuk mendapatkan sesuatu yang objektif dan rasional tentang sesuatu hal.

Data Statistik

Data adalah sesuatu yang digunakan atau dibutuhkan dalam penelitian dengan menggunakan parameter tertentu yang telah ditentukan. Dalam prakteknya statistik tidak dapat dilepaskan dari data yang berupa angka (kuantitatif). Namun sebenarnya data dalam statistik juga dapat mengandung data non angka atau data kualitatif yang dikuantitatifkan.

Data dalam statistik berdasarkan tingkat pengukurannya dibedakan menjadi :

1. Data Kualitatif (Qualitative data)

Data kualitatif secara sederhana dapat didefinisikan sebagai suatu data yang didasarkan pada fakta yang bukan berupa angka, tetapi berupa kata (teks), kalimat, gambar atau bagan.

Misalnya : Pekerjaan, agama dan lain sebagainya

Data kualitatif ini dapat dibagi menjadi dua :

• Data Nominal

Data nominal adalah data yang paling rendah dalam level pengukuran data. Jika suatu pengukuran data hanya menghasilkan satu dan hanya satu-satunya kategori, sifat data ini adalah setara atau tidak menunjukkan tingkatan tertentu.

Misalnya data kelamin seseorang, "laki-laki" dan "perempuan", data ini termasuk nominal, karena seorang laki-laki tidak mungkin juga berkelamin perempuan. Data nominal dalam praktek statistik biasanya dijadikan "angka", yaitu proses yang disebut kategori. Misalnya jenis kelamin laki-laki dikategorikan "1" dan perempuan dikategorikan sebagai "2".

Data Ordinal

Data ordinal adalah data yang menunjukkan pada tingkatan tertentu, sehingga jenis data ini akan merupakan tingkatan urutan dari yang lebih tinggi menuju ke urutan yang lebih rendah, dengan kata lain data hasil kategorisasi ini sifatnya tidak setara.

3

Misalnya "pandai" diberi kategori "4", "sedang" diberi kategori "3", "kurang" diberi kategori "2", "sangat kurang" diberi kategori "1".

2. Data Kuantitatif (Quantitative Data)

Data kuantitatif adalah data berupa angka dalam arti yang sebenarnya. Data kuantitatif dibedakan menjadi dua :

• Data Interval

Adalah data statistik yang mempunyai jarak yang sama diantara halhal yang sedang diselidiki, satuan ukurannya mempunyai skala yang sama, antara kategori dapat diketahui selisihnya, menggunakan titik 0 (nol) tidak mutlak. Data interval ini tergolong sebagai data kontinu yang merupakan data yang tingkatannya lebih tinggi dibandingkan dengan data ordinal.

Contoh : Suhu air A = 100° C, air B = 75° C, air C = 50° C dan air D = 0° C

• Data Rasio

Adalah data yang dapat dilakukan perhitungan aritmatika, data ini mempunyai nilai nol (0) absolute, maksudnya angka 0 benar-benar tidak ada nilainya. Data rasio adalah data dengan tingkat pengukurannya paling tinggi diantara jenis data lainnya.

Contoh data rasio misalnya : prestasi, usia, jumlah bakteri, tinggi tanaman dan lain-lain.

Variabel

Variabel diartikan sebagai kontruk atau sifat-sifat yang diteliti. Dapat pula dikatakan bahwa variabel adalah suatu yang menggolongkan anggotaanggota kelompok ke dalam beberapa golongan. Bisa juga dikatakan bahwa variabel adalah suatu sifat yang dapat memiliki bermacam nilai (harga). Apabila suatu variabel hanya mempunyai satu nilai saja, maka variabel tersebut disebut konstanta. Variabel dalam penelitian dibedakan sebagai berikut :

- Variabel terikat (*dependen variabel*), adalah variabel yang dipengaruhi oleh variabel lain atau variabel yang terpengaruh, yang sifatnya tidak dapat berdiri sendiri (tergantung).
- Variabel bebas (*independen variabel*), adalah variabel yang mempengaruhi variabel lain, yang sifatnya berdiri sendiri.

Populasi dan Sampel

Populasi adalah suatu kelompok atau kumpulan subjek atau objek yang akan digeneralisasikan dari hasil penelitian, sedangkan sampel adalah sebagian dari populasi yang akan diteliti dan dianggap telah mewakili dari populasi.

Analisis Data

Analisis data adalah proses mengolah data dan penginterpretasian hasil pengolahan data. Analisis data dikelompokkan menjadi :

5

• Analisis Deskriptif

Yaitu statistik yang berusaha menjelaskan atau menggambarkan berbagai karakteristik data, seperti berapa rata-ratanya, seberapa jauh data bervariasi dan sebagainya.

• Analisis Induktif (Inferensial)

Yaitu statistik yang berusaha membuat berbagai inferensi terhadap sekumpulan data yang berasal dari suatu sampel, pengujian hipotesis, pengambilan keputusan dan menyimpulkan hasil penelitian.

Metode Analisis Data

Berdasarkan parameter yang ada dan untuk keperluan inferensi, maka metode analisis data statistik dibagi menjadi :

- Statistik Parametrik adalah metode analisis data dengan menggunakan parameter-parameter tertentu, seperti, mean, median, standar deviasi dan distribusi data adalah normal.
- Statistik Non-Parametrik adalah metode analisis data tanpa menggunakan parameter-parameter tertentu, seperti mean, median, standar deviasi dan distribusi data tidak harus normal.

Hipotesis

Hipotesis adalah jawaban sementara atau rumusan masalah penelitian yang belum dibuktikan kebenarannya. Hipotesis dinyatakan dengan kalimat pernyataan, bukan kalimat pertanyaan. Hipotesis dibedakan menjadi dua antara lain :

- Hipotesis nihil atau nol hipotesis (H₀) adalah hipotesis yang menyatakan tidak adanya hubungan antar variabel, atau hipotesis yang meniadakan perbedaan atau pengaruh.
- Hipotesis alternatif atau hipotesis kerja (Ha/H₁) adalah hipotesis yang menyatakan adanya hubungan antar variabel, atau menyatakan adanya perbedaan atau pengaruh.

Dalam analisis statistik yang diuji adalah hipotesis nihil-nya (H_0), dengan ditolaknya H_0 berarti H_1 diterima dan sebaliknya.

Signifikansi

Signifikansi berasal dari kata signifikan yang artinya meyakinkan, berarti, nyata atau dapat dipercaya. Dalam penelitian mengandung arti bahwa hipotesis yang telah terbukti pada sampel dapat diberlakukan (digeneralisasikan) pada populasi. Tingkat signifikansi 5% atau 0,05 artinya kita mengambil resiko salah dalam mengambil keputusan untuk menolak hipotesis yang benar sebanyak-banyaknya 5% dan benar dalam mengambil keputusan (tingkat kepercayaan) sedikitnya 95%. Ukuran 0,05 atau 0,01 adalah ukuran yang umum sering digunakan dalam penelitian. Tingkat signifikansi yang lebih kecil atau lebih teliti biasanya digunakan untuk penelitian-tertentu misalnya untuk meneliti makanan, minuman, obat atau yang berkaitan dengan jiwa, maka dibutuhkan ketelitian yang lebih tinggi misalnya signifikansi 0,005 atau 0,001.

Probabilitas

Probabilitas (*p-value*) adalah peluang munculnya kejadian. Besarnya peluang melakukan kesalahan disebut taraf signifikansi. Jadi taraf signifikansi bisa dinyatakan dengan probabilitas.

Degree of Freedom

Degree of Freedom (Df) adalah derajat kebebasan (dk atau db), banyaknya observasi (n) dan banyaknya variabel independen. Df ini digunakan untuk menentukan nilai kritis.

Kurva Normal

Kurva normal adalah suatu kurva yang digunakan untuk menggambarkan daerah penerimaan dan penolakan H_0 .

Gambar Kurva normal dengan pengujian 2 sisi atau 2 ekor

Gambar Kurva normal dengan pengujian 1 sisi atau 1 ekor

BAB II	ENTRI DATA SPSS
	 ✓ Pengantar SPSS ✓ Cara Kerja SPSS ✓ Membuka Program SPSS 15.0 ✓ Menu yang ada pada Data Editor ✓ Input/Entri Data ✓ Menyimpan Data ✓ Mengedit Data ✓ Mengurutkan Data

Pengantar SPSS (Statistikal Product and Service Solution)

SPSS merupakan program (*Software*) statistik yang digunakan khusus untuk mengolah data statistik. Dari berbagai program olah data statistic lainnya, SPSS adalah yang paling banyak digunakan dan diminati oleh para pemakai di seluruh dunia. SPSS pertama kali dibuat tahun 1968 oleh tiga mahasiswa Stanford University. Pada tahun 1984, SPSS pertama kali muncul dengan versi PC. Dengan berkembangnya ilmu dan kebutuhan dan dengan mulai populernya sistem operasi Windows, SPSS pada tahun 1992 juga mengeluarkan versi Windows, diantaranya adalah versi 7.5, versi 9.0, versi 10.0, versi 11, versi 12, versi 13, versi 14, versi 15 dan yang terkini adalah SPSS for Windows versi 16.0.

SPSS yang tadinya ditujukan bagi pengolahan data statistik untuk ilmu sosial (SPSS saat itu adalah singkatan dari *Statistikal Package for the Social Science*), sekarang diperluas untuk melayani berbagai jenis user, seperti untuk proses produksi di pabrik, riset ilmu-ilmu sains dan lainnya. Sehingga sekarang kepanjangannya adalah *Statistikal Product and Service Solution*.

Cara Kerja SPSS

Proses pengolahan data dengan SPSS dapat dinyatakan dalam gambar diagram sebagai berikut :

Membuka Program SPSS 15.0

Pastikan bahwa di dalam komputer anda telah terinstal program SPSS 15.0. Klik Start – All Program – SPSS for Windows. Setelah beberapa saat akan muncul tampilan sebagai berikut :

								Va	this G of C
-	444	4.44	 	1 Aug (1)	100 11	444	1.0	1.11	1.00
11		1	-	1		-			
-			-			-	1		
						-			
1.42			-						
10									
1.0									
10									
-301									
.11									
12						_			
-12									
.14									
110									
10									
10									
-110									
101									
1.04									

Menu yang ada pada Data Editor :

• <u>F</u>ile

Menu File berfungsi untuk menangani hal-hal yang berhubungan dengan data, seperti membuat file baru, membuka file, mengambil data dari program lain, mencetak data dan lainnya.

• <u>E</u>dit

Menu Edit berfungsi untuk menagani hal-hal yang berhubungan dengan memperbaiki atau mengubah nilai data, menghapus dan mengkopi data.

• <u>V</u>iew

Menu View berfungsi untuk mengatur toolbar, sepertis status bar, menampilkan value label, mengubah ukuran dan jenis font dan lain-lain.

• <u>D</u>ata

Menu Data berfungsi untuk membuat perubahan data SPSS secara keseluruhan, seperti mengurutkan data menyeleksi data berdasar kriteria tertentu, menggabung data dan sebagainya.

• <u>T</u>ransform

Menu Transform berfungsi untuk membuat perubahan pada variabel yang telah dipilih dengan kriteria tertentu. Atau mengubah data dengan melakukan transformasi sehingga diperoleh variabel baru.

• Analyze

Menu Analyze merupakan menu inti SPSS yang berfungsi untuk melakukan semua proses perhitungan statistik, seperti statistik deskriptif, uji t, uji anova, uji korelasi, regresi dan lainnya.

• Graphs

Menu Graphs berfungsi untuk membuat berbagai jenis grafik untuk mendukung analisis statistik, seperti Pie, Line, Bar dan kombinasinya.

• Utilities

Menu Utilities merupakan menu tambahan program SPSS, seperti :

- Memberi informasi tentang variabel yang sekarang sedang dikerjakan
- Mengatur tampilan menu-menu yang lain.

• Add-ons

Merupakan menu tambahan yang belum ada pada versi-versi sebelumnya, di dalamnya terdiri beberapa sub menu yaitu Applications, services, Programmability extention dan statistics guides.

• Window

Menu Window berfungsi untuk berpindah di antara menu-menu yang lain di SPSS.

• Help

Menu Help berfungsi untuk menyediakan bantuan informasi mengenai program SPSS yang dapat di akses secara mudah dan jelas.

Data Editor mempunyai dua fungsi utama :

- Menginput data yang akan di olah SPSS
- Proses data yang telah diinput dengan prosedur statistik tertentu.

Input/Entri Data

Data Editor pada SPSS mempunyai dua bagian utama :

- Kolom, dengan ciri adanya kata var dalam setiap kolomnya, kolom dam SPSS akan diisi oleh VARIABEL.
- **Baris**, dengan ciri adanya angaka 1, 2, 3 dan seterusnya, baris dalam SPSS akan diisi oleh KASUS.

Berikut dijelaskan sebuah contoh pengisian data di SPSS.

Contoh : Misalnya suatu penelitian ingin mengetahui pengaruh metode mengajar, dan gaya belajar siswa terhadap prestasi belajar. Maka peneliti mengumpulkan data sebagai berikut :

No.	Nama	Prestasi Belajar	Metode Mengajar	Gaya Belajar
1	FITRIA DWI KURNIAWATI	6,5	Diskusi	Auditory
2	WULANDARI	6,5	Diskusi	Visual
3	IINSRIUTAMI	7,5	Diskusi	Kinestetik
4	ANDRINUGROHO	8,5	Diskusi	Auditory
5	RATRICAHYANINGRUM	9,0	Diskusi	Kinestetik
6	DIAN BUDI PRATAMA	7,5	Diskusi	Kinestetik
7	RINDA RINDIAWATI	7,5	Diskusi	Visual
8	DWIPRIYANTO	7,0	Jigsaw	Visual
9	M.AFIF KURNIAWAN	6,0	Jigsaw	Auditory
10	NOVERAWATI AUTANTIKA	8,0	Jigsaw	Kinestetik
11	AMRINA RUSYADA	7,5	Jigsaw	Visual
12	NISAADININGRUM	7,5	Jigsaw	Kinestetik
13	WINDA ARI SUSANTI	5,5	Jigsaw	Visual
14	FUAT KHAMDANI LUBIS	9,5	Jigsaw	Auditory
15	DWI IRNA WATI	7,0	Jigsaw	Auditory

Sebelum membuat tabel diatas menjadi data yang siap diolah oleh SPSS perlu diperhatikan bahwa di sini ada 3 variabel; yaitu Prestasi Belajar, Metode Mengajar dan Gaya Belajar. Selain itu di sini ada 15 data atau kasus.

Langkah-langkah :

- a. Buka lembar kerja baru atau dari menu utama <u>File</u> pilih New klik
 Data.
- b. Menamai variabel yang diperlukan

Variabel pertama : Nama

Klik mouse pada tab sheet *Variabel View* atau klik menu *View* lalu submenu *Variables*

Kemudian tampak layar sebagai berikut :

3 4 4 4 4 12 1 1 1 1 1 13 1 1 1 1 1 14 1 1 1 1 1 15 1 1 1 1 1 16 1 1 1 1 1 17 1 1 1 1 1 18 1 1 1 1 1 19 1 1 1 1 1 18 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1 1 1 1 1 19 1		Name	Туре	Wedth	Decimals	Label	Values	Missing	Column
	1						11 11		
	2								
	3								
	-								
	0								
	0	1							
	15								
	1.12								
100 101 102 103 104 104 106 106 107 107 107 107 107 107 107 107	. 6								
131 132 134 134 136 136 137 137 137	10								
12 13 14 16 16 17 16 17 16	7.1	-							
53 34 36 39 39 30 30 30 30 30 30 30 30 30 30	122								
24 36 36 37	12								
16 76 77 78	74								
	16								
17 76	16								
76	37								
	16								

- Karena merupakan variabel pertama, tempatkan pointer pada baris 1
 - Name, di bawah kolom name, klik ganda dan ketik Nama
 - *Type*, karena "nama" terdiri dari huruf non angka, maka pilih *String*
 - *Width*, untuk keseragaman ketik **22** (artinya maksimal 22 huruf untuk menulis nama)
 - Decimal, karena tipe data adalah string maka tidak ada desimal.
 - Label, klik ganda dan ketik Nama responden.
 - Values, abaikan pilihan ini.
 - *Missing*, karena tidak ada data yang hilang maka abaikan bagian ini.
 - Column, untuk lebar kolom ketik 22.
 - Align, pilih saja left, yang berarti rata kiri.

• *Measure*, untuk data string ada dua pilihan, nominal atau ordinal, karena variabel string nama bersifat unik pilih *Nominal*.

Variabel kedua : Prestasi

Masih tetap di Variable view letakkan pointer pada baris 2

- Name , klik ganda dan ketik Prestasi
- Type, karena "prestasi" berupa angka maka pilih numeric
- Width, biarkan pada angka 8
- Decimal, karena data terdiri dari satu desimal, maka ketik 1
- Label, klik ganda dan ketik Prestasi belajar.
- Values, untuk data kuantitatif, abaikan saja pilihan ini.
- Missing, karena tidak ada data yang hilang maka abaikan bagian ini.
- Column, biar sesuai dengan default atau ketik 8
- Align, pilih saja center, yang berarti rata tengah.
- *Measure*, pilih *scale*.

Variabel ketiga : Metode

Masih tetap di Variable view letakkan pointer pada baris 3

- Name , klik ganda dan ketik Metode
- *Type*, untuk "metode" tidak dapat diberi tipe string, namun dinumerikkan atau dikategorikan dengan kode, untuk itu biarkan saja pada pilihan *numeric*
- Width, karena hanya akan dimasukkan kode maka ketik 8
- Decimal, karena berupa kode maka ketik saja 0
- Label, klik ganda dan ketik Metode mengajar

 Values, pilihan ini adalah untuk pemberian kode, klik mouse pada kotak kecil di kanan sel. Pada kotak isian Value ketik 1. Pada kotak isian Value label, ketik Jigsaw, klik tombol <u>Add</u>, selanjutnya isi kembali untuk value, ketik 2 dan pada Velue label ketik Diskusi. Klik kembali tombol <u>A</u>dd, karena sudah selesai maka klik OK. Sehingga jadi seperti pada gambar berikut:

- *Missing*, karena tidak ada data yang hilang maka abaikan bagian ini.
- Column, biar sesuai dengan default atau ketik 8
- Align, pilih saja center, yang berarti rata tengah.
- Measure, karena sudah dianggap numerik maka pilih scale.

Variabel keempat : Gaya

Masih tetap di Variable view letakkan pointer pada baris 4

- Name , klik ganda dan ketik Gaya
- *Type*, untuk "gaya" tidak dapat diberi tipe string, namun dinumerikkan atau dikategorikan dengan kode, untuk itu biarkan saja pada pilihan *numeric*
- Width, karena hanya akan dimasukkan kode maka ketik 8
- Decimal, karena berupa kode maka ketik saja 0
- Label, klik ganda dan ketik Gaya Belajar

 Values, pilihan ini adalah untuk pemberian kode, klik mouse pada kotak kecil di kanan sel. Pada kotak isian Value ketik 1. Pada kotak isian Value label, ketik Auditory, klik tombol <u>Add</u>, selanjutnya isi kembali untuk value, ketik 2 dan pada Velue label ketik Visual, klik tombol <u>Add</u>, selanjutnya isi kembali untuk value, ketik 3 dan pada Velue label ketik Kinestetik Klik kembali tombol <u>Add</u>, karena sudah selesai maka klik OK. Sehingga jadi seperti pada gambar berikut:

Rentment		
244144		
ine -		(inst.)
	100	1.00
120	T/umate:	
-		

- *Missing*, karena tidak ada data yang hilang maka abaikan bagian ini.
- Column, biar sesuai dengan default atau ketik 8
- Align, pilih saja center, yang berarti rata tengah.
- *Measure*, karena sudah dianggap numerik maka pilih scale.

Setelah penamaan variabel selesai maka akan tampak seperti gambar berikut :

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Alig
1	Nama	String	22	0	Nama Responden	None	None	8	Left
2	Prestasi	Numeric	8	1	Prestasi Belajar	None	None	8	Left
3	Metode	Numeric	8	0	Metode Mengajar	(1. Jigsaw)	None	8	Right
4	Gaya	Numeric	8	0	Gaya Belajar Siswa	(1, Auditory).	None	8	Right

c. Mengisi Data

Setelah pengisian nama variabel selesai, langkah berikutnya adalah pengisian data.

- Klik tab Data view yang ada di kiri layar.
- Untuk mengisi variabel **Nama**, letakkan pointer pada baris 1 kolom variabel Nama, lalu ketik menurun.
- Untuk mengisi variabel **Prestasi**, letakkan pointer pada baris 1 kolom variabel Prestasi, lalu ketik menurun ke bawah
- Untuk mengisi kolom Metode, dari menu utama klik View, kemudian submenu Value label kemudian ketik kode 1 dan 2 sesuai dengan data yang ditentukan.
- Untuk mengisi kolom Gaya, dari menu utama klik View, kemudian submenu Value label kemudian ketik kode 1, 2 dan 3 sesuai dengan data yang ditentukan.

North Entern Children W	0671				104	inible 4 ct 4 years
Nama	Prestesi	Metode	Gaya	1 (Mar. 1)	War:	VIII
1 FITRIA DWI KURNIAWATI	6.5	2	1			
2 WULANDARI	6.5	2	2			
3 IIN SRI UTAMI	7.5	2	3			
4 ANDRI NUGROHO	8.5	2	1			
6 RATRI CAHVANINGRUM	9.0	2	3			
6 DIAN BUDI PRATAMA	7.5	2	3			
7 RINDA RINDIAWATI	7.5	2	2			
8 DWI PRIYANTO	7.0	1	2			
9 MARIE KURNSAWAN	6.0	1	1			
10 NOVERAWATI AUTANTIKA	8.0	1	3			
11 AMRINA RUSYADA	7.5	1	2			
12 NISA ADININGRUM	7.5.	1	3			
13 WINDA ARI SUSANTI	5.5	1	2			
14 FUAT KHAMDANI LUBIS	9.5	1	1			
15 DWI IRNA WATI	7.0	1	.1			
10						
37						
Th						

Maka hasilnya seperti pada gambar sebagai berikut :

Menyimpan Data

- Dari menu utama SPSS, pilih menu <u>File</u>, kemudian pilih submenu Save
 <u>A</u>s...
- Untuk keseragaman ketik nama file **Data_1**, pilih tempat pada directory yang dikehendaki.

Mengedit Data

- Untuk menghapus data, letakkan pointer pada data yang akan dihapus, kemudian dari menu <u>Edit</u> pilih sub menu Cut, atau Delete.
- Untuk mengganti data/membetulkan data, letakkan pointer pada data yang akan diganti, kemudian ketik data baru.

Mengurutkan Data

Letakkan pointer pada variabel yang akan diurutkan, dari menu utama **Data** pilih submenu **Sort Cases** ..., kemudian pilih **Ascending** (dari A ke Z) atau **Descending** (dari Z ke A).

BAB III	ANALISIS DESKRIPTIF
	 ✓ Pengertian Analsis Deskriptif ✓ Analisis Deskriptif dengan SPSS 15.0 ✓ Interpretasi Output

Pengertian Analisis Deskriptif

Data statistik yang diperoleh umumnya masih acak, mentah dan tidak terorganisir dengan baik (*raw data*). Data tersebut harus diolah, diringkas dengan baik dan teratur, baik dalam bentuk tabel atau presentasi grafis sebagai dasar untuk berbagai pengambilan keputusan.

Analsisis deskriptif dilakukan guna mengetahui gambaran data yang akan dianalisis. Analisis deskriptif merupakan dasar dari analisis inferensi atau analisis lanjut. Teknik analisis inferensi sangat ditentukan oleh hasil analisis deskriptifnya. Oleh karena itu kecermatan dan ketelitian melakukan analisis deskriptif sangat diperlukan untuk menentukan analisis inferensi.

Dua ukuran penting yang sering dipakai dalam pengambilan keputusan adalah :

- Ukuran tendensial sentral atau kecenderungan terpusat (*Central Tendency*), adalah suatu ukuran yang digunakan untuk mengetahui kumpulan data mengenai sampel atau populasi yang disajikan dalam tabel atau diagram yang dapat mewakili sampel atau populasi. Ada beberapa macam ukuran tendensi sentral, yaitu mean, median, modus, kuartil, desil dan presentil.
- Ukuran dispersi atau penyebaran data, adalah ukuran statistik yang digunakan untuk mengetahui luas penyebaran data atau tingkat homogenitas data. Ada beberapa macam ukuran penyebaran data yang sering digunakan, seperti ; range, Standar Deviasi, dan Varians.

Contoh Kasus :

Dari data yang telah tersimpan (pada file **Data_1**) pada variabel **Prestasi** akan dibuat tabel frekuensi serta deskripsi statistik (meliputi *Mean, Standar Deviasi, Skewness* dan lainnya, juga akan dibuat grafik histogram dan lingkaran.

Langkah-langkah :

- Buka file Data_1 pada directory My Document
- Dari menu SPSS, pilih menu <u>Analyze</u>, kemudian submenu Deskriptive Statistics.
- Dari serangkaian pilihan pilih, pilih *Frequencies ...*, klik mouse pada variabel **Prestasi** kemudian klik tanda ^C.

Frequencies			8
🗛 Nana Responden (Nz		Valdiel(s)	OK.
Metode Mengajas (He Gaza Belaiar Sizwa (G)		and the second diversion of th	Paste
The second second second			Beset
	Ŀ		Careal
			Help
L			
Display Impuercy tables			
	Statute	z. Dusts. Fomal.	

- Klik pilihan Statistics, pada Precentiles Values atau nilai presentil, klik Quartiles dan Percentiles (s). Ketik angka 10 pada kotak di sebelah kanannya, lalu klik <u>A</u>dd sekali lagi ketik 90 pada kotak yang sama.
- Dispersion atau penyebaran data, klik semua pilihan.
- Central Tendency atau pengukuran pusat data, klik mean dan median.
- *Distribution* atau bentuk distribusi data, klik *Skewness* dan *Kurtosis*. Lalu klik *Continue*.

- Klik pilihan <u>Charts</u>, pada Charts Type pilih pilih <u>Histogram</u> disertai With normal curve, lalu klik Continue.
- Klik pilihan *Format,* pada Order by pilih *Ascending Values* (dari data terkecil ke terbesar), lalu klik *Continue*.
- Klik OK jika semua pengisian telah selesai.
 Maka akan ditampilkan outputnya sebagai berikut :

Frequencies

	Statistics	
Prestasi Belajar		
N	Valid	15
	Missing	0
Mean		7.400
Std. Error of Mean		.2769
Median		7.500
Std. Deviation		1.0724
Variance		1.150
Skewness		.249
Std. Error of Skewne	SS	.580
Kurtosis		.039
Std. Error of Kurtosis		1.121
Range		4.0
Minimum		5.5
Maximum		9.5
Percentiles	10	5.800
	25	6.500
	50	7.500
	75	8.000
	90	9.200

Prestasi Belajar

		Frequency	Percent	Valid Percent	Cumulativ e Percent
Valid	5.5	1	6.7	6.7	6.7
	6.0	1	6.7	6.7	13.3
	6.5	2	13.3	13.3	26.7
	7.0	2	13.3	13.3	40.0
	7.5	5	33.3	33.3	73.3
	8.0	1	6.7	6.7	80.0
	8.5	1	6.7	6.7	86.7
	9.0	1	6.7	6.7	93.3
	9.5	1	6.7	6.7	100.0
	Total	15	100.0	100.0	

Interpretasi Output :

Output Bagian Pertama (Statistics)

- N adalah jumlah data yang valid (sah untuk diproses) adalah 15.
 Sedangkan data yang hilang (*missing*) adalah 0. Di sini berarti data siap diproses.
- *Mean* adalah rata-rata nilai responden :

$$\overline{X} = \frac{\sum X}{n} = \frac{111}{15} = 7,4$$

Dengan *standar error of mean* adalah 0,2769. Penggunaan standar error of mean untuk memperkirakan besar rata-rata populasi yang diperkirakan dari sampel. Untuk itu dengan *standar error of mean* tertentu dan pada tingkat kepercayaan 95% rata-rata nilai menjadi :

Rata-rata = ± 2 standar error of mean

Maka = 7,4 ± (2 x 0,2769)

= 6,8462 sampai 7,9538

- Median adalah titik tengah setelah semua data diurutkan dan dibagi sama besar atau dengan rumus : Median = data ke ½ (n + 1) maka diperoleh angka 7,500, menunjukkan bahwa 50% prestasi adalah 7,5 ke atas dan 50% nya adalah 7,5 ke bawah.
- Standar deviasi. Standar deviasi sering disebut juga simpangan baku, yang merupakan ukuran disperse baku yang banyak digunakan dalam penelitian. Standar deviasi disajikan dengan σ atau s, adalah akar kuadrat dari varians (σ² atau S²), sehingga :

$$\sigma=\sqrt{\sigma^2}$$

Varians dari nilai-nilai X_1 , X_2 , X_3 , X_n pada sampel disajikan dengan S^2 , didefinisikan sebagai berikut :

$$S^2 = \frac{\sum (X - \overline{X})^2}{n - 1}$$

maka :

$$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Dari output diperoleh angka standar deviasi 1,0724 yang merupakan akar dari varians yaitu 1,150.

Rata-rata ± 2 standar deviasi

Maka = 7,400 ± (2 X 1,0724)

= 5,2552 sampai 9,5448

Perhatikan batas angka tersebut dengan nilai minimum dan maximum. Semakin tipis selisihnya maka sebaran data tersebut baik, dan seterusnya.

• Skewness (kemenjuluran)

Kemenjuluran digunakan untuk mengetahui derajat kesimetrian sebuah model (*distribusi*), dinyatakan dengan Koefisien Kemenjuluran Pearson. Angka yang diperoleh adalah 0,087, untuk penilaian tersebut diubah ke angka rasio.

Rasio Skewness adalah : nilai Skewness/Std.Error Skewness

Jika rasio Skewness berada di antara -2 sampai +2, maka distribusi data adalah normal, oleh karena 0,43 terletak pada daerah tersebut maka dapat dikatakan distribusi sampel data prestasi belajar adalah normal.

• Kurtosis (keruncingan)

Kurtosis menunjukkan tinggi rendahnya atau runcing datarnya suatu kurva, yaitu *leptokurtik* (runcing), *mesokurtik* (normal) atau *platikurtik* (datar).

Angka yang diperoleh adalah 0,039, untuk penilaian tersebut diubah ke angka rasio.

Rasio Kurtosis adalah : nilai Kurtosis/Std.Error Kurtosis

Jika rasio kurtosis berada di antara -2 sampai +2, maka distribusi data adalah normal, oleh karena 0,035 terletak pada daerah tersebut maka dapat dikatakan distribusi sampel data prestasi belajar adalah normal.

• Range

Adalah selisis antara nilai yang terendah (minimum) dengan nilai yang tertinggi (maximum) : 9,5 – 5,5 = 4

• Percentiles

Artinya adalah rata-rata prestasi belajar adalah 10% di bawah 5,800, 25% di bawah 6,500, 50% di bawah 7,500 dan 75% di bawah 8,000 atau rata-rata prestasi belajar 90% di atas 5,800.

Output Bagian Kedua (Prestasi belajar)

Pada baris pertama responden yang mendapat nilai 5,5 sebanyak (frekuensi) 1 orang atau (1/15*100%) = 6,7%. Dan seterusnya hingga mencapai 100%.

Output Bagian Ketiga (Histogram)

Bagian ini menggambarkan grafik data yang telah dibuat frekuensinya. Terlihat bahwa batang histogram mempunyai kemiripan bentuk dengan kurva normal (bentuk seperti lonceng) yang disertakan, hal ini membuktikan bahwa distribusi sudah dapat dikatakan normal atau mendekati normal.

BAB IV	ANALISIS UJI INSTRUMEN
	 ✓ Pentingnya Uji Validitas dan Reliabilitas ✓ Uji Validitas Korelasi Bivariate Pearson <i>Correlated Item-Total Correlation</i> ✓ Uji Reliabilitas

Pentingnya Uji Validitas dan Reliabilitas

Salah satu masalah utama dalam kegiatan penelitian sosial dan psikologi adalah masalah cara memperoleh data informasi yang akurat dan objektif. Hal ini menjadi sangat penting artinya dikarenakan kesimpulan penelitian hanya akan dapat dipercaya apabila didasarkan pada informasi yang juga dapat dipercaya.

Para ahli psikometri telah menetapkan kriteria bagi setiap alat ukur psikologis untuk dapat dinyatakan sebagai alat ukur yang baik, yaitu mampu memberikan informasi yang dapat dipercaya. Kriteria yang dimaksud adalah reliabel, valid, standar, ekonomis dan praktis.

Sifat reliabel dan valid diperhatikan oleh tingginya reliabilitas dan validitas hasil ukur suatu tes. Suatu instrumen ukur yang tidak reliabel atau tidak valid akan memberikan informasi yang tidak akurat mengenai keadaan subjek atau individu yang dikenai tes itu. Apabila informasi yang keliru itu dengan sadar atau tidak dengan sadar kita gunakan sebagai dasar pertimbangan dalam pengambilan suatu kesimpulan dan keputusan maka tentulah kesimpulan dan keputusan itu tidak akan merupakan kesimpulan dan keputusan yang tepat.

Keputusan yang tidak tepat, kadang-kadang tidak begitu terasa akibat buruknya, akan tetapi lebih sering menimbulkan akibat-akibat parah. Haruslah diingat bahwa subjek pengukuran psikologis adalah manusia. Nasib manusia seringkali ikut ditentukan oleh hasil tes dan pengukuran yang dikenakan padanya. Keputusan yang keliru, yang disebabkan oleh informasi dari tes yang tidak reliabel atau tidak valid, kadang-kadang akibatnya tidak lagi dapat diperbaiki seumur hidup. Seseorang calon pelamar pekerjaan dapat ditolak oleh pihak perusahaan berdasarkan hasil tes psikologis. Kalau tes yang dijadikan dasar penolakannya itu ternyata tes yang tidak reliabel dan tidak valid, bukan saja pelamar yang bersangkutan yang dirugikan tetapi juga perusahaan yang menolak calon karyawan yang mungkin potensial.

Guna mengungkap aspek-aspek atau variabel-variabel yang ingin kita teliti itu diperlukan alat ukur berupa skala atau tes yang reliabel dan valid agar kesimpulan penelitian nantinya tidak keliru dan tidak memberikan gambaran yang jauh berbeda dari keadaan yang sebenarnya. Bila variabel penelitian diungkap oleh alat ukur yang reliabilitas dan validitasnya belum teruji tentu kesimpulan penelitian kita tidak sepenuhnya dapat dipercaya. Kalau ada orang lain yang percaya begitu saja akan hasil penelitian seperti itu tanpa memperhatikan apakah datanya diperoleh dengan menggunakan alat ukur yang baik atau tidak, maka orang tersebut akan mendapatkan informasi yang menyesatkan. Pada gilirannya, kemudian sangat mungkin ia akan mengkomunikasikan hasil penelitian itu pada orang lain lagi yang berarti menyebarluaskan hasil yang tidak benar pula. Di sinilah pentingnya masalah reliabilitas dan validitas pengukuran.

Uji Validitas

Salah satu instrumen yang sering dipakai dalam penelitian ilmiah adalah angket, yang bertujuan untuk mengetahui pendapat seseorang mengenai sesuatu hal, seperti sikap siswa/mahasiswa, kepuasan, motivasi dan sebagainya.

Sebuah angket bisa disusun dengan pertanyaan yang bersifat terbuka atau pertanyaan yang bersifat tertutup. Salah satu skala yang sering dipakai dalam penyusunan angket adalah *skala Linkert,* yaitu skala yang berisi lima tingkat jawaban yang merupakan skala jenis *ordinal*. Penyusunan skala Linkert lima tingkat seperti berikut :

1 = Sangat Setuju

2 = Setuju

3 = Ragu-ragu

4 = Tidak Setuju

5 = Sangat Tidak Setuju

Ada dua syarat penting yang berlaku pada sebuah angket, yaitu keharusan sebuah angket untuk *Valid* dan *Reliabel*.

Suatu angket dikatakan Valid (sah) jika pertanyaan pada suatu angket mampu untuk mengungkapkan sesuatu yang akan diukur oleh angket tersebut.

Langkah-langkah menyusun Angket

Pada prinsipnya, ada tiga langkah dalam menyusun sebuah angket :
- Menetapkan sebuah konstrak, yaitu membuat batasan mengenai variabel yang akan diukur.
- Menentukan faktor-faktor atau indikator, yaitu mencoba menemukan unsur-unsur yang ada pada sebuah konstrak.
- Menyusun item-item pertanyaan, yaitu mencoba menjabarkan sebuah faktor lebih lanjut dalam berbagai pertanyaan yang langsung berinteraksi dengan pengisi angket.

Pengujian validitas dan reliabilitas adalah proses menguji item-item pertanyaan yang ada dalam sebuah angket. Jika item-item sudah valid dan reliabel berarti butir-butir tersebut sudah bisa untuk mengukur faktornya. Langkah selanjutnya adalah menguji apakah faktor-faktor sudah valid untuk mengukur konstrak yang ada. Jadi validitas dibedakan menjadi validitas faktor dan validitas item. Pengukuran validitas faktor ini dengan cara mengkorelasikan antara skor faktor dengan skor total faktor, sedangkan pengukuran validitas item dengan cara mengkorelasikan antara skor item

Dalam pembahasan ini akan dibahas untuk metode pengujian validitas item. Dari hasil perhitungan korelasi akan didapat suatu koefisien korelasi yang digunakan untuk mengukur tingkat validitas suatu item dan untuk menentukan apakah suatu item layak digunakan atau tidak.

Pada program SPSS teknik pengujian yang sering digunakan para peneliti untuk uji validitas adalah menggunakan korelasi Bivariate Pearson (*Product*

Momen Pearson Correlation) dan Correlated Item-Total Correlation. Masingmasing teknik perhitungan korelasi akan dibahas sebagai berikut:

1. Korelasi Bivariate Pearson (Product Momen Pearson Correlation)

Analisis ini dengan cara mengkorelasikan masing-masing skor item dengan skor total. Skor total adalah penjumlahan dari keseluruhan item. Item-item pertanyaan yang berkorelasi signifikan dengan skor total menunjukkan item-item tersebut mampu memberikan dukungan dalam mengungkap apa yang diungkap. Koefisien korelasi ini dapat dicari dengan rumus sebagai berikut :

$$r_{xy} = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{\left[n\Sigma x^2 - (\Sigma x)^2\right]\left[n\Sigma y^2 - (\Sigma y)^2\right]}}$$

Keterangan :

- r_{xv} : Koefisien korelasi
- x : Skor item

y : Skor total

n : Banyaknya subyek

Dasar mengambil keputusan :

- Jika r hitung > r tabel, maka instrumen atau item pertanyaan berkorelasi signifikan terhadap skor total (dinyatakan valid).
- Jika r hitung < r tabel, maka instrumen atau item pertanyaan tidak berkorelasi signifikan terhadap skor total (dinyatakan tidak valid).

Contoh kasus :

Seorang mahasiswa meneliti tentang pengaruh motivasi terhadap prestasi belajar, maka mahasiswa tersebut membuat angket dan diperoleh hasilnya sebagai berikut :

Cubick					Skor	item					Skor
Subjek	1	2	3	4	5	6	7	8	9	10	Total
1	2	3	3	3	4	4	3	3	4	2	31
2	3	3	3	3	3	3	3	3	3	3	30
3	3	3	3	4	2	3	2	2	2	2	26
4	3	5	3	3	3	3	3	2	2	2	29
5	3	3	4	4	4	4	3	3	2	2	32
6	3	4	3	4	3	2	3	3	3	3	31
7	2	4	4	5	5	4	4	3	5	2	38
8	4	5	3	4	4	5	5	5	4	4	43
9	2	3	3	3	2	1	4	4	2	2	26
10	2	3	3	5	5	1	4	4	5	2	34
11	4	4	4	3	4	2	2	3	4	4	34
12	2	2	2	2	2	2	1	2	2	2	19
13	3	3	4	1	3	4	4	3	3	3	31
14	2	5	3	3	2	3	3	4	2	2	29
15	3	2	3	5	3	2	3	5	3	3	32
16	4	5	5	3	4	4	4	3	4	4	40
17	5	5	5	4	5	3	3	5	5	5	45
18	2	4	4	4	2	4	4	2	2	2	30
19	3	3	3	4	3	2	3	4	3	3	31
20	3	4	4	3	2	4	3	2	2	2	29

Langkah-langkah :

- Buka lembar kerja baru
- Klik variable view pada SPSS Data Editor

- Namai setiap variabel (Item_1 sampai Item_10) kemudian masukkan datanya (ikuti langkah-langkahnya seperti pada penjelasan bab II). Tambakan variabel total.
- Klik data view pada SPSS Data editor
- Masukkan data-datanya, ketik skor totalnya sesuai dengan jumlah skor tiap baris.
- Setelah selesai simpan file anda dengan nama Angket.
- Dari menu utama SPSS, pilih menu *Analyze*, kemudian pilih sub menu *Correlate*, lalu pilih *Bivariate*
- Dari kotak dialog *Reliability Analysis*, masukkan semua variabel ke dalam kotak *Items* di sebelah kanan dengan mengklik tanda
- Pada pilihan Correlation coefficient, pilih Pearson
- Klik **OK** untuk mengakhiri perintah.

Maka akan ditampilkan ringkasan outputnya sebagai berikut :

Correlations

Second		Skor Total
Rem_1	Pearson Conelation	.662*
	Big. (2-tailed)	100.
	N	
Itam_2	Pearson Constation	.597*
	Sig. (2-tailed)	.005
	N	20
ttem_3	Pearson Cometation	.662*
	Sig. (2-tailed)	.001
	N	20
Bern_4	Pearson Conelation	396
	Eig. (2-tailed)	.084
	N	20
itam, 5	Palarson Consilation	782*
	Sig. (2-tailed)	.000
	N	20
Nem_8	Pearson Conetation	292
	Big. (2-tailed)	.087
	N	20
ittern_7	Pearson Constation	.581*
	Sig. (3-tailed)	.007
	N	20
ttern_8	Pearson Constation	.578*
	Sig (2-tailed)	.007
	N	20
litern_8	Pearson Conelation	771*
	Big. (2-tailed)	.000
	N.	20
item_10	Palarson Conelation	725*
	Sig. (2-tailed)	.000
	. 14	20

Interpretasi Output :

Dari hasil analisis di atas di dapat output nilai korelasi antara skor item dengan skor total. Nilai ini kemudian kita bandingkan dengan nilai r tabel, r tabel dicari pada signifikansi 0,05 dengan uji 2 sisi dan jumlah data (n) = 20, maka di dapat r tabel sebesar 0,444 (lihat lampiran tabel r).

Dari output tersebut diperoleh nilai korelasi untuk item 4 dan 6 nilai kurang dari r tabel = 0,444, maka item-item tersebut tidak berkorelasi signifikan dengan skor total (dinyatakan tidak valid), sedangkan item-item lainnya nilai korelasinya lebih besar dari r tabel = 0,444, maka item-item instrumen tersebut valid.

2. Correlated Item-Total Correlation

Analisis ini dilakukan dengan cara mengkorelasikan masing-masing skor item dengan skor total dan melakukan koreksi terhadap nilai koefisien korelasi yang overestimasi. Perhitungan teknik ini cocok digunakan pada skala yang menggunakan item pertanyaan yang sedikit, karena pada item yang jumlahnya banyak penggunaan korelasi bivariate (tanpa koreksi) efek overestimate yang dihasilkan tidak terlalu besar.

Agar kita memperoleh informasi yang lebih akurat mengenai korelasi antara item dengan tes diperlukan suatu rumusan korelasi terhadap efek *spurious overlap*, yaitu sebagai berikut :

$$r_{i(x-1)} = \frac{r_{ix}S_x - S_i}{\sqrt{[S_{x^2} + S_{i^2} - 2r_{ix}S_iS_x]}}$$

Keterangan :

- *r*_{i(x-1)} : Koefisien korelasi item-total setelah dikoreksi dari efek *spurious* overlap
- rise : Koefisien korelasi item-total sebelum dikoreksi
- S_i : Standar deviasi skor item yang bersangkutan
- S_a: Standar deviasi skor total

Langkah-langkah :

- Buka lembar kerja baru
- Buka file Angket.
- Dari menu utama SPSS, pilih menu *Analyze*, kemudian pilih sub menu *Scale Reliability Analysis* lalu pilih *Bivariate*
- Klik dan masukkan semua variabel (Item_1 sampai Item_10) ke dalam kotak *Items* di sebelah kanan dengan mengklik tanda
- Klik Statistics, pada Descriptives for Klik Scale if item deleted
- Klik Continue, Kemudian Klik OK untuk mengakhiri perintah.

Maka akan ditampilkan outputnya sebagai berikut :

Case Processing Summary

		N	%
Cases	Valid	20	100.0
	Excludeda	0	.0
	Total	20	100.0

a. Listwise deletion based on all variables in the procedure.

	Scale Mean if	Scale Variance if	Corrected Item-Total	Cronbach's Alpha if Item
	Item Deleted	Item Deleted	Correlation	Deleted
Item_1	29.10	29.674	.569	.787
Item_2	28.35	29.608	.474	.796
Item_3	28.55	30.261	.580	.788
Item_4	28.50	31.947	.242	.821
Item_5	28.75	26.829	.696	.769
Item_6	29.00	31.684	.216	.828
Item_7	28.80	30.274	.468	.797
Item_8	28.75	29.671	.448	.799
Item_9	28.90	26.621	.676	.771
Item_10	29.30	28.537	.638	.779

Item-Total Statistics

Interpretasi Output :

Dari hasil outpt di atas di dapat dilihat pada kolom *corrected Itemtotal Correlation*. Inilah nilai korelasi yang di dapat. Nilai ini kemudian kita bandingkan dengan nilai r tabel, r tabel dicari pada signifikansi 0,05 dengan uji 2 sisi dan jumlah data (n) = 20, maka di dapat r tabel sebesar 0,444 (lihat lampiran tabel r).

Dari output tersebut nilai korelasi untuk item 4 dan 6 nilai kurang dari r tabel = 0,444, maka item-item tersebut tidak berkorelasi signifikan dengan skor total (dinyatakan tidak valid), sedangkan item-item lainnya nilai korelasinya lebih besar dari r tabel = 0,444, maka item-item instrumen tersebut valid.

Uji Reliabilitas

Reliabilitas merupakan penerjemahan dari kata *reliability* yang mempunyai asal kata *rely* dan *ability*. Pengukuran yang memiliki reliabilitas tinggi disebut sebagai pengukuran yang reliabel. Reliabilitas mempunyai berbagai makna lain seperti keterpercayaan, keterandalan, keajegan, kestabilan, konsistensi dan sebagainya, namun ide pokok yang terkandung dalam konsep reliabilitas adalah sejauh mana hasil suatu pengukuran dapat dipercaya. Sedangkan suatu angket dikatakan Reliabel (andal) jika jawaban seseorang terhadap pertanyaan adalah konsisten atau stabil dari waktu ke waktu.

Uji reliabilitas digunakan untuk mengetahui konsistensi alat ukur, apakah alat pengukur yang digunakan dapat diandalkan dan tetap konsisten jika pengukuran tersebut diulang. Dalam program SPSS metode yang sering digunakan adalah dengan menggunakan metode Alpha Cronbach's.

Rumus reliabilitas dengan metode Alpha adalah :

$$r_{11} = \left[\frac{k}{k-1}\right] \left[1 - \frac{\sum \sigma_b^2}{\sigma_1^2}\right]$$

Keterangan :

- *r*₁₁ : Reliabilitas instrumen
- k : Banyaknya item pertanyaan

 $\sum \sigma_{\!b}{}^2$: Jumlah varian butir

 σ_l^2 : Varian total

Uji signifikansi dilakukan pada taraf α = 0,05. Instrumen dapat dikatakan reliabel bila nilai Alpha lebih besar dari r tabel (*Product Moment*).

Pada contoh kasus di atas setelah diuji validitasnya, maka item-item yang yang valid dimasukkan dalam uji reliabilitas dengan langkah-langkah sebagai berikut :

- Buka lembar kerja baru
- Buka file Angket.
- Dari menu utama SPSS, pilih menu Analyze, kemudian pilih sub menu Scale – Reliability Analysis lalu pilih Bivariate
- Klik dan masukkan semua variabel yang valid dan keluarkan variabel yang tidak valid

A here, 6 Skor Ta	na ("mai)	•	/ ten,1 / ten,2 / ten,3 / ten,5 / ten,5 / ten,3 / ten,3	0 I X	Pasta Pasta Bissat Earcel Help
Model	Abbe			15	Talk-Brief

- Klik Statistics, pada Descriptives for Klik Scale if item deleted
- Klik Continue, Kemudian Klik OK untuk mengakhiri perintah.

Maka akan ditampilkan outputnya sebagai berikut :

Reliability

Case Processing Summary

		Ν	%
Cases	Valid	20	100.0
	Excludeda	0	.0
	Total	20	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.838	8

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
Item_1	22.60	22.042	.608	.815
Item_2	21.85	22.555	.437	.836
Item_3	22.05	22.997	.557	.822
Item_5	22.25	19.987	.679	.803
ltem_7	22.30	23.379	.399	.839
Item_8	22.25	21.987	.482	.831
Item_9	22.40	19.516	.694	.801
Item_10	22.80	20.695	.724	.799

Interpretasi Output :

Dari hasil outpt di atas di dapat nilai Alpha sebesar 0,838, nilai ini kemudian kita bandingkan dengan nilai r tabel, r tabel dicari pada signifikansi 0,05 dengan uji 2 sisi dan jumlah data (n) = 20, maka di dapat r tabel sebesar 0,444 (lihat lampiran tabel r). Oleh karena nilai r = 0,838 > r tabel = 0,444 maka dapat disimpulkan bahwa item-item tersebut reliabel.

Uji Normalitas

Dalam analisis statistik parametrik, persyaratan normalitas data harus terpenuhi, yaitu data berasal dari distribusi normal. Uji ini untuk mengetahui apakah populasi data berdistribusi normal atau tidak. Uji ini biasanya menggunakan data berskala ordinal, interval atau rasio. Jika data tidak berdistribusi normal dan atau jumlah sampel sedikit dan jenis data adalah nominal atau ordinal, maka metode yang digunakan adalah statistik nonparametrik. Asumsi yang mendasari dalam *Analisis of Varians* (ANOVA) adalah bahwa populasi data berdistribusi normal.

Untuk uji kenormalan dari sampel dapat dilakukan dengan bantuan uji Shipiro-Wilk, Kolmogorov-Smirnov dan Liliefors serta gambar Normal Probability Plots.

Dasar pengambilan keputusan :

- Jika nilai Sig. (signifikansi) atau nilai probabilitas < 0.05, maka data berdistribusi tidak normal.
- Jika nilai Sig. (signifikansi) atau nilai probabilitas > 0.05, maka data berdistribusi normal.

Masih dengan menggunakan contoh kasus yang ada yaitu pada file Data_1 kita akan menguji kenormalan Prestasi Belajar dengan faktor.

Langkah – langkah :

- Buka File Data_1
- Dari menu utama SPSS, pilih menu <u>Analyze</u>, kemudian pilih pilih submenu Deskriptive Statistiks.

- Dari serangkaian yang ada, pilih *Explore ...*, maka terbuka kotak dialog Explore.
- Dependen List, klik variabel Prestasi Belajar, kemudian klik tanda ^c bagian yang atas.
- Factor List, Klik variabel Metode Mengajar dan Gaya Belajar , kemudian klik tanda ^c bagian yang bawah.
- Klik pilihan Statistiks, pilih Deskriptives, lalu klik Continue.
- Klik pilihan *Plots,* pada Boxplot pilih *None.* Pada *Deskriptif*, Pilih *Stemand leaf*
- Klik pilihan Normality Plot with tests
- Pada pilihan *Spread vs level with Levene Test*, pilih *Power Estimation*, kemudian klik *Continue*.
- Pada bagian *Displays*, pilih *Both* (yang berarti statistiks maupun Plots akan digunakan.
- Klik *OK* jika semua sudah selesai.

Maka akan ditampilkan sebagian outputnya sebagai berikut :

Metode Mengajar

	Metode Mengajar			Statistic	Std. Error
Prestasi Belajar	Jigsaw	Mean		7.250	.4330
		95% Confidence	Lower Bound	6.226	
		Interval for Mean	Upper Bound	8.274	
		5% Trimmed Mean		7.222	
		Median		7.250	
		Variance		1.500	
		Std. Deviation		1.2247	
		Minimum		5.5	
		Maximum		9.5	
		Range		4.0	
		Interquartile Range		1.6	
		Skewness		.467	.752
		Kurtosis		.857	1.481
	Diskusi	Mean		7.571	.3523
		95% Confidence	Lower Bound	6.709	
		Interval for Mean	Upper Bound	8.434	
		5% Trimmed Mean		7.552	
		Median		7.500	
		Variance		.869	
		Std. Deviation		.9322	
		Minimum		6.5	
		Maximum		9.0	
		Range		2.5	
		Interquartile Range		2.0	
		Skewness		.361	.794
		Kurtosis		738	1.587

Descriptives

Tests of Normality

		Kolmogorov -Smirnov ^a			Shapiro-Wilk		
	Metode Mengajar	Statistic	df	Sig.	Statistic	df	Sig.
Prestasi Belajar	Jigsaw	.169	8	.200*	.956	8	.773
	Diskusi	.245	7	.200*	.898	7	.319

 $^{\ast}\cdot$ This is a lower bound of the true significance.

a. Lillief ors Significance Correction

Gaya Belajar Siswa

Descriptives

	Gaya Belajar Siswa			Statistic	Std. Error
Prestasi Belajar	Auditory	Mean		7.500	.6519
		95% Confidence	Lower Bound	5.690	
		Interval for Mean	Upper Bound	9.310	
		5% Trimmed Mean		7.472	
		Median		7.000	
		Variance		2.125	
		Std. Deviation		1.4577	
		Minimum		6.0	
		Maximum		9.5	
		Range		3.5	
		Interquartile Range		2.8	
		Skewness		.605	.913
		Kurtosis		-1.599	2.000
	Visual	Mean		6.800	.3742
		95% Confidence	Lower Bound	5.761	
		Interval for Mean	Upper Bound	7.839	
		5% Trimmed Mean		6.833	
		Median		7.000	
		Variance		.700	
		Std. Deviation		.8367	
		Minimum		5.5	
		Maximum		7.5	
		Range		2.0	
		Interguartile Range		1.5	
		Skewness		-1.089	.913
		Kurtosis		.536	2.000
	Kinestetik	Mean		7.900	.2915
		95% Confidence	Lower Bound	7.091	
		Interval for Mean	Upper Bound	8.709	
		5% Trimmed Mean		7.861	
		Median		7.500	
		Variance		.425	
		Std. Deviation		.6519	
		Minimum		7.5	
		Maximum		9.0	
		Range		1.5	
		Interquartile Range		1.0	
		Skewness		1.714	.913
		Kurtosis		2.664	2.000

Tests of Normality

		Kolm	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Gaya Belajar Siswa	Statistic	df	Sig.	Statistic	df	Sig.	
Prestasi Belajar	Auditory	.234	5	.200*	.928	5	.585	
	Visual	.201	5	.200*	.881	5	.314	
	Kinestetik	.330	5	.079	.735	5	.021	

 $^{\ast}\cdot$ This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Interpretasi Output : Output Tests Of Normality Ada dua uji, vaitu :

- Kolmogorov-Smirnov dengan keterangan adalah sama dengan Uji Liliefors (lihat tanda 'a' di bawah tabel). Didapat untuk prestasi belajar ditinjau dari metode mengajar jigsaw dan diskusi nilai probabilitas di atas 0.05 (0.200* dan 0.200*), begitu juga prestasi belajar ditinjau dari gaya belajar auditory, visual dan kinestetik nilai probabilitas di atas 0.05 (0.200*, 0.200* dan 0,079) maka dapat dikatakan data prestasi belajar berdistribusi normal pada tingkat kepercayaan 95% dengan adanya tanda *.
- 2. Shapiro-Wilk, didapat untuk prestasi belajar ditinjau dari metode mengajar jigsaw dan diskusi nilai probabilitas di atas 0.05 (0.773* dan 0.319*), begitu juga untuk prestasi belajar ditinjau dari gaya belajar auditory dan visual nilai probabilitas di atas 0.05 (0.585*dan 0.314*) maka dapat dikatakan data prestasi belajar berdistribusi normal pada tingkat kepercayaan 95% dengan adanya tanda *. Sedangkan dengan metode ini prestasi belajar ditinjau dari gaya belajar kinestetik nilai probabilitas di bawah 0,05 yaitu 0,021, maka data berdistribusi tidak normal.

Uji Homogenitas

Uji homogenitas digunakan untuk mengetahui varian dari beberapa populasi sama atau tidak. Uji ini dilakukan sebagai prasyarat dalam analisis *Independen Sample T Test* dan Anova. Asumsi yang mendasari dalam Analisis of varians (ANOVA) adalah bahwa varian dari beberapa populasi adalah sama.

Dasar pengambilan keputusan :

- Jika nilai Sig. (signifikansi) atau nilai probabilitas < 0.05, maka dikatakan bahwa varian dari dua atau lebih kelompok populasi data adalah tidak sama.
- Jika nilai Sig. (signifikansi) atau nilai probabilitas > 0.05, maka dikatakan bahwa varian dari dua atau lebih kelompok populasi data adalah sama.

Masih dengan menggunakan contoh kasus yang ada yaitu pada file Data_1 kita akan menguji homogenitas varian Prestasi Belajar berdasarkan metode dan gaya belajar.

<u>Langkah – langkah :</u>

- Buka File Data_1
- Dari menu utama SPSS, pilih menu <u>A</u>nalyze, kemudian pilih pilih submenu *Compare Means One Way Anova*.
- Dependen List, klik variabel Prestasi Belajar, kemudian klik tanda ^c bagian yang atas.
- Factor List, Klik variabel Metode Mengajar, kemudian klik tanda ^G bagian yang bawah.
- Klik Options.
- Klik Homogeneity of variance, Kemudian klik Continue
- Klik OK untuk mengakhiri perintah.
- Ulangi cara yang sama untuk variabel Gaya belajar.
 Sehingga akan menghasilkan output sebagai berikut :

```
Prestasi BY Metode
```

Test of Homogeneity of Variances

Prestasi Belajar

Levene Statistic	df 1	df 2	Sig.
.307	1	13	.589

Prestasi BY Gaya

Test of Homogeneity of Variances

Prestasi Belajar

Levene Statistic	df 1	df 2	Sig.
3.298	2	12	.072

Interpretasi Output :

Dari hasil output di atas dapat diketahui nilai probabilitas untuk prestasi belajar berdasarkan kelompok metode mengajar = 0.589 dan berdasarkan kelompok Gaya belajar = 0,072. Maka dapat disimpulkan bahwa data prestasi belajar berdasarkan metode dan gaya mempunyai varian yang sama.

Uji Linearitas

Uji linearitas bertujuan untuk mengetahui apakah dua variabel mempunyai hubungan yang linear atau tidak secara signifikan. Uji ini biasanya digunakan sebagai prasyarat dalam analisis korelasi atau regresi linear. Dasar pengambilan keputusan :

- Jika nilai probabilitas > 0.05, maka dikatakan hubungan antara variabel X dengan Y adalah linear
- Jika nilai probabilitas < 0.05, maka dikatakan hubungan antara variabel
 X dengan Y adalah tidak linear

Contoh :

Misalnya kita akan menguji variabel Motivasi dengan Prestasi apakah mempunyai hubungan yang linear secara signifikan atau tidak, dengan contoh data sebagai berikut :

Motivasi	75	60	65	75	65	80	75	80	65	80	60	65
Prestasi	85	75	75	90	85	85	95	95	80	90	75	75

Langkah – langkah :

- Buka program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom *Name,* ketik X pada baris pertama dan ketik Y pada baris kedua.
- Pada kolom Decimals, ketik atau ganti 0
- Pada kolom *Label*, Ketik **Motivasi** untuk baris pertama dan **Prestasi** untuk baris kedua
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti tabel di atas sesuai dengan variabelnya
- Simpan dengan Nama Data_2
- Klik menu Analyze Compare Means Means
- Masukkan variabel **Prestasi** pada kotak *Dependen list*, dan masukkan variabel **Motivasi** ke kotak *Independent list*
- Klik *Option*, pada Statistik for First Layer Klik *Test for Linearity*, kemudian klik *Continue*
- Klik OK untuk mengakhiri perintah
 Maka akan muncul outputnya sebagai berikut :

			Sum of Squares	df	Mean Square	F	Sig.
Prestasi * Motivasi	Between	(Combined)	487.500	3	162.500	7.704	.010
	Groups	Linearity	459.810	1	459.810	21.798	.002
		Deviation from Linearity	27.690	2	13.845	.656	.545
	Within Groups		168.750	8	21.094		
	Total		656.250	11			

Interpretasi Output :

Dari output tersebut di atas diperoleh nilai $F_{hitung} = 0,656 < F_{tabel} = 4,46$ dan probabilitas = 0,545 > 0,05, maka dapat disimpulkan antara Motivasi dengan Prestasi mempunyai hubungan yang linear.

Uji Keberartian

Uji ini untuk mengetahui apakah hubungan antar variabel berarti (signifikan) atau tidak.

Dasar pengambilan keputusan :

- Jika nilai probabilitas > 0.05, maka dikatakan hubungan antara variabel
 X dengan Y adalah tidak berarti
- Jika nilai probabilitas < 0.05, maka dikatakan hubungan antara variabel X dengan Y adalah berati

Masih menggunakan data dan output di atas kita dapat menentukan keberartian hubungan antar variabel.

Interpretasi Output :

Dari output tersebut di atas diperoleh nilai $F_{hitung} = 21,798 > F_{tabel} = 4,96$ dan probabilitas = 0,002 < 0,05, maka dapat disimpulkan bahwa antara Motivasi dengan Prestasi mempunyai hubungan yang berarti.

Analisis uji komparasi merupakan analisis statistik inferensi, yaitu statistik yang berusaha membuat berbagai inferensi terhadap sekumpulan data yang berasal dari suatu sampel, pengujian hipotesis, pengambilan keputusan dan menyimpulkan.

Hipotesis disajikan dalam bentuk pernyataan yang menghubungkan secara eksplisit maupun implisit satu variabel dengan variabel lainnya. Hipotesis perlu dirumuskan terlebih dahulu sebelum dilakukan pengumpulan data. Hipotesis ini disebut Hipotesis Alternatif (H_a atau H₁), hipotesis ini merupakan kesimpulan sementara dan hubungan antar variabel yang sudah dipelajari dari teori-teori yang berhubungan dengan masalah tersebut.

Untuk pengujian Hipotesis Alternatif (H_1) diperlukan diperlukan pembanding yaitu Hipotesis Null (H_0), hipotesis ini digunakan sebagai dasar pengujian statistik. Maka H_0 disebut Hipotesis Statistik.

Hipotesis Null (Ho) yang dirumuskan dengan harapan akan ditolak, dari penolakan Ho akan mengakibatkan suatu Hipotesis Alternatif (H₁) diterima. Penerimaan suatu Hipotesis Statistik (H₀), merupakan akibat tidak cukup bukti untuk menolaknya dan tidak berimplikasi bahwa hipotesis itu benar.

Adapun suatu uji hipotesis alternatifnya bisa bersifat satu arah yang disebut uji hipotesis satu ekor (2-tailed) (dan bersifat dua arah uji hipotesis dua ekor (1-tailed). Pengambilan keputusan ditentukan dengan membandingkan nilai statistik hitung dengan nilai kritis/statistik tabel.

Uji Perbedaan Rata-rata Satu Sampel (One Sample t Test)

Uji ini digunakan untuk mengetahui perbedaan nilai rata-rata populasi yang digunakan sebagai pembanding dengan rata-rata sebuah sampel. Dari hasil uji ini akan diketahui apakah rata-rata populasi yang digunakan sebagai pembanding berbeda nyata secara signifikan denagn rata-rata sebuah sampel, jika ada perbedaan rata-rata manakah yang lebih tinggi.

Contoh :

Dari 10 orang mahasiswa yang aktif di unit kegiatan mahasiswa yang dipilih acak, Indek Prestasinya (IP) adalah 2,75 ; 3,00 ; 2,96 ; 3,80 ; 3,10 ; 2,60 ; 3,04 ; 2,05 ; 2,70 dan 2,10. Apakah data tersebut dapat dijadikan sebagai bukti bahwa Indek Prestasi mahasiswa yang aktif di unit kegiatan mahasiswa tidak kurang dari 3,00 ? Gunakan taraf signifikansi 5% dan diasumsikan data menyebar secara normal.

Langkah-Langkah :

- Buka program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom Name, ketik IP pada baris pertama
- Pada kolom *Decimals*, ketik 2
- Pada kolom Label, Ketik Indek Prestasi pada baris pertama
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti data di atas

- Simpan dengan Nama Data_3
- Klik menu Analyze Compare Means One Sample T Test

Maka akan muncul kotak dialog sebagai berikut :

 Test Variablets)	OK.
🛷 Indek. Prestan (IP)	Paste
	Reset
	Carcel
	Help

- Masukkan variabel Indek Prestasi pada kotak Test Variable(s)
- Ketik angka 3,00 pada kotak Test Value
- Klik Options, ketik nilai selang kepercayaan yang digunakan pada *Confidence Interval* dalam hal ini biarkan defaultnya 95%
- Klik OK untuk mengakhiri perintah
 Maka akan muncul outputnya sebagai berikut :

T-Test

One-Sample Statistics

				Std. Error
	N	Mean	Std. Deviation	Mean
Indek Prestasi	10	2.8100	.50741	.16046

One-Sample Test

		Test Value = 3.00						
					95% Confidence			
					Interval of the			
				Mean	Diffe	rence		
	t	df	Sig. (2-tailed)	Diff erence	Lower	Upper		
Indek Prestasi	-1.184	9	.267	19000	5530	.1730		

Interpretasi Output :

Dari output tersebut di atas kita bisa menguji hipotesis :

 H_0 : $\mu = 3,00$

- Std. Error Mean = galat baku rata-rata

SE = $5/\sqrt{n}$ = 0,50741/ $\sqrt{10}$ = 0,16046

- T = adalah nilai t hitung yang diperoleh dari rumus :

$$t = \frac{\bar{x} - \mu_0}{S/\sqrt{n}} = \frac{2,81 - 3,00}{0,507/\sqrt{10}}$$
$$= -1,184$$

- df = degree of freedom = derajat bebas = n 1 = 9
- Sig. (2-tailed) = nilai probabilitas pada pengujian dua pihak = 0,267

Pengambilan keputusan :

1) Berdasarkan perbandingan antara t $_{\rm hitung}$ dengan t $_{\rm tabel}$

- Jika statistik hitung > statistik tabel, maka H_0 ditolak

- Jika statistik hitung < statistik tabel, maka H₀ diterima

Diketahui t hitung output adalah -1,184

Sedangkan statistik tabel dapat dicari pada tabel t :

- Tingkat signifikansi (α) adalah 5% atau tingkat kepercayaan 95%.
- df (*degree of freedom*) atau derajat kebebasan adalah n 1 atau
 10 1 = 9.

 Uji dilakukan dua sisi atau dua ekor karena akan diketahui apakah rata-rata IP mahasiswa yang aktif di unit kegiatan mahasiswa lebih kecil dari 3,00 atau tidak. Perlunya dua sisi dapat diketahui pula dari output SPSS yang menyatakan 2 tailed.

Dari tabel t, didapat angka (t = $\alpha/2$) = 2,2622

Keputusan :

Oleh karena t hitung terletak pada daerah H_0 diterima, berarti bahwa rata-rata IP mahasiswa yang aktif di unit kegiatan mahasiswa tidak kurang dari 3,00.

- 2) Berdasarkan perbandingan nilai probabilitas (Sig.)
 - Jika probabilitas > 0,05, maka H₀ diterima
 - Jika probabilitas < 0,05, maka H₀ ditolak

Keputusan :

Terlihat bahwa t hitung adalah -1,184 dengan probabilitas 0,267

Oleh karena probabilitas 0,267 > 0,05, maka H_0 diterima, berarti bahwa rata-rata IP mahasiswa yang aktif di unit kegiatan mahasiswa tidak kurang dari 3,00.

Uji Perbedaan Rata-rata Dua Sampel Berpasangan (Paired Sample t Test)

Uji ini digunakan untuk menguji ada tidaknya perbedaan mean untuk dua sampel bebas (*independen*) yang berpasangan. Adapun yang dimaksud berpasangan adalah data pada sampel kedua merupakan perubahan atau perbedaan dari data sampel pertama atau dengan kata lain sebuah sampel dengan subjek sama mengalami dua perlakuan.

Contoh:

Suatu program diet dilakukan untuk menurunkan berat badan. Dari 10 orang mengikuti program diet dipilih secara acak. Setelah dua bulan mengikuti program tersebut, berat badannya ditimbang kembali, hasilnya dalam kg sebagai berikut :

Sebelum diet	80	65	73	65	68	76	84	78	65	70
Setelah diet	74	60	70	61	66	73	80	75	60	68

Dengan informasi di atas, apakah dapat dikatakan bahwa program diet tersebut berhasil ? Gunakan taraf uji 5% dan diasumsikan berat badan mengikuti sebaran normal.

Langkah-langkah :

- Buka lembar kerja baru pada program SPSS
- Klik *variable view* pada SPSS Data editor
- Pada kolom Name, ketik Sebelum pada baris pertama dan Sesudah pada baris kedua
- Pada kolom *Decimals*, ketik 0

- Pada kolom *Label,* Ketik **Sebelum diet** untuk baris pertama dan **Sesudah diet** untuk baris kedua
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti data di atas sesuai dengan variabelnya
- Simpan dengan Nama Data_4
- Klik menu Analyze Compare Means Paired- Samples T test...
 Maka akan muncul kotak dialog sebagai berikut :

Fishelan-det (vetreben	Pained Variations	1
Carolin da Javrada		Fat
0		Rea
		Caro
		Hat
Correct Semigranter		
Variable 1		

- Klik variabel Sebelum diet, kemudian klik Sesudah diet, masukkan ke kotak Paired Variable (s) dengan klik tanda ▶, maka pada Paired variables (s) terlihat tanda Sebelum .. Sesudah.
- Untuk Option, gunakan tingkat kepercayaan 95% atau tingkat signifikansi 5%, Klik Continue
- Untuk mengakhiri Klik **OK**.

Maka akan ditampilkan outputnya sebagai berikut :

T-Test

Paired Samples Statistics

					Std. Error
		Mean	N	Std. Deviation	Mean
Pair	Sebelum diet	72.40	10	6.88	2.18
1	Sesudah diet	68.70	10	6.95	2.20

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Sebelum diet & Sesudah diet	10	.981	.000

Paired Samples Test

			Pair 1
			Sebelum diet - Sesudah diet
Paired Diff erences	Mean		3.70
	Std. Deviation		1.34
	Std. Error Mean		.42
	95% Confidence Interval	Lower	2.74
of	of the Difference	Upper	4.66
t			8.748
df			9
Sig. (2-tailed)			.000

Interpretasi Output :

Output Bagian Pertama (Group Statistics)

Pada bagian pertama ini menyajikan deskripsi dari pasangan variabel yang dianalisis, yang meliputi rata-rata (mean) sebelum diet 72,40 dengan Standar deviasi 6,88 dan sesudah diadakan praktikum rata-rata 68,70 dengan Standar deviasi 6,95.

Output Bagian Kedua (Correlations)

Bagian ini diperoleh hasil korelasi antara kedua variabel, yang menghasilkan angka 0,981 dengan nilai probabilitas (Sig.) 0,000. Hal ini menyatakan

63

bahwa korelasi antara sebelum diet dan sesudah diet berhubungan secara nyata, karena nilai probabilitas < 0,05.

Output Bagian Ketiga (Paired Samples Test)

Hipotesis :

- H₀ = Kedua rata-rata populasi adalah sama (rata-rata berat badan sebelum dan sesudah diet adalah sama/tidak berbeda secara nyata).
- H₁ = Kedua rata-rata populasi adalah sama (rata-rata berat badan sebelum dan sesudah diet adalah tidak sama/ berbeda secara nyata).

Pengambilan keputusan :

1) Berdasarkan perbandingan antara t $_{\rm hitung}$ dengan t $_{\rm tabel}$

- Jika statistik hitung > statistik tabel, maka H₀ ditolak

- Jika statistik hitung < statistik tabel, maka H₀ diterima

Diketahui t _{hitung} output adalah 8,748

Yang diperoleh dari perhitungan menggunakan rumus :

$$t = \frac{d}{S/\sqrt{n}} = \frac{3.70}{1.34/\sqrt{10}} = 8,748$$

Sedangkan statistik tabel dapat dicari pada tabel t :

- Tingkat signifikansi (α) adalah 5% atau tingkat kepercayaan 95%.
- df (*degree of freedom*) atau derajat kebebasan adalah n 1 atau
 10 1 = 9.
- Uji dilakukan dua sisi atau dua ekor karena akan diketahui apakah rata-rata sebelum sama dengan sesudah ataukah tidak. Perlunya

dua sisi dapat diketahui pula dari output SPSS yang menyatakan 2 *tailed.*

Dari tabel t, didapat angka (t = $\alpha/2$) = 2,2622

Keputusan :

Oleh karena t _{hitung} terletak pada daerah H₀ ditolak, maka dapat disimpulkan bahwa berat badan sebelum diet dan sesudah diet adalah tidak sama atau berbeda nyata, yang berarti bahwa program diet yang dilakukan berhasil secara signifikan.

- 2) Berdasarkan perbandingan nilai probabilitas (Sig.)
 - Jika probabilitas > 0,05, maka H₀ diterima
 - Jika probabilitas < 0,05, maka H₀ ditolak

Keputusan :

Terlihat bahwa t hitung adalah 8,748 dengan probabilitas 0,000

Oleh karena probabilitas 0,000 < 0,05, maka H_0 ditolak, yang berarti berat badan sebelum diet dan sesudah diet adalah tidak sama atau berbeda nyata

Dalam output juga disertakan perbedaan mean sebesar 3,70 yaitu selisih rata-rata berat badan sebelum diet dengan sesudah diet.

Uji Perbedaan Rata-rata Dua Sampel Tidak Berpasangan (Independent Sample t Test)

Uji ini digunakan untuk membandingkan rata-rata dari dua group yang tidak berhubungan satu dengan yang lain, apakah kedua group tersebut mempunyai rata-rata yang sama ataukah tidak secara signifikan. Data kuantitatif dengan asumsi data berdistribusi normal dan jumlah data sedikit (di bawah 30).

Contoh :

Ada anggapan bahwa ada perbedaan Indek Prestasi antara mahasiswa lakilaki dan perempuan. Dari contoh acak mahasiswa yang dipilih, diperoleh data Indek Prestasi sebagai berikut :

Laki-laki	2,11	3,15	2,75	3,10	2,95	2,95	3,00	2,50	2,79	2,50
Perempuan	3,05	2,70	2,90	2,67	3,15	2,03	2,65	2,37		

Berdasarkan data tersebut, apakah cukup bukti untuk mempercayai pernyataan di atas ? Gunakan taraf 5% dan diasumsikan IP mahasiswa menyebar normal dengan ragam sama.

Langkah-langkah :

- Buka lembar kerja baru pada program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom Name, ketik IP pada baris pertama dan Gender pada baris kedua

- Pada kolom *Decimals*, ketik 2 untuk baris pertama dan ketik 0 untuk baris kedua karena data berupa kategori
- Pada kolom *Label*, Ketik **Indek Prestasi** untuk baris pertama dan **Jenis Kelamin** untuk baris kedua
- Pada baris kedua, pada kolom Values, klik mouse pada kotak kecil di kanan sel. Pada kotak isian Value ketik 1, pada kotak isian Value label, ketik Laki-laki, klik tombol <u>A</u>dd, selanjutnya isi kembali untuk value, ketik 2 dan pada Velue label ketik Perempuan, klik kembali tombol <u>A</u>dd, karena sudah selesai maka klik OK.
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti data di atas sesuai dengan variabelnya
- Simpan dengan Nama Data_5
- Klik menu *Analyze Compare Means Independent- Samples T test...* Maka akan muncul kotak dialog sebagai berikut :

independent Samples 1 Te	1	Define Groups	×
	Tee Vanide()	Use specified values Group 1: 1 Group 2: 2 Cut point	Continue Cancel Help

- Klik variabel Indek Prestasi, masukkan ke kotak Test Variable(s) dengan klik tanda ▶,
- Pada *Grouping Variable*, Klik *Define Groups* ketik 1 pada Group 1 dan ketik 2 pada Group 2 seperti gambar di atas. Kemudian klik *Continue*

- Untuk **Option,** gunakan tingkat kepercayaan 95% atau tingkat signifikansi 5%, Klik *Continue*
- Untuk mengakhiri Klik **OK**.

Maka akan ditampilkan outputnya sebagai berikut :

T-Test

	Jenis Kelamin	N	Mean	Std. Deviation	Std. Error Mean
Indek Prestasi	Laki-laki	10	2.7800	.3253	.1029
	Perempuan	8	2.6900	.3636	.1285

Independent Samples Test

		Indek Prestasi		
			Equal v ariances	Equal variances
			assumed	not assumed
Levene's Test for	F		.006	
Equality of Variances	Sig.		.937	
t-test for Equality of	t		.554	.547
Means	df		16	14.280
	Sig. (2-tailed)		.587	.593
	Mean Difference		9.000E-02	9.000E-02
	Std. Error Difference		.1625	.1646
	95% Confidence Interval of the Difference	Lower	2545	2625
		Upper	.4345	.4425

Interpretasi Output :

Output Bagian Pertama (Group Statistics)

Pada bagian pertama ini menyajikan deskripsi variabel yang dianalisis, yang meliputi rata-rata (mean) Indek Prestasi laki-laki = 2,7800 dengan Standar deviasi 0,3253 dan rata-rata Indek Prestasi perempuan = 2,6900 dengan Standar deviasi 0,3636.
Output Bagian Kedua (Independent Sample Test)

Analisis uji F

Hipotesis :

H₀ = Kedua varians populasi adalah sama (homogen)

H₁ = Kedua varians populasi adalah tidak sama (tidak homogen)
 Pengambilan keputusan :

Jika probabilitas > 0,05, maka H₀ diterima

Jika probabilitas < 0,05, maka H₀ ditolak

Keputusan :

Terlihat bahwa F $_{hitung}$ untuk Indek Prestasi adalah 0,006 dengan probabilitas 0,937. Oleh karena probabilitas > 0,05, maka H $_0$ diterima atau kedua varians populasi adalah sama (homogen).

Analisis uji t

Hipotesis :

- H₀ = Rata-rata Indek Prestasi antara laki-laki dan perempuan adalah sama
- H₁ = Rata-rata Indek Prestasi antara laki-laki dan perempuan adalah tidak sama

Pengambilan keputusan :

1) Berdasarkan perbandingan antara t $_{\rm hitung}$ dengan t $_{\rm tabel}$

- Jika statistik hitung > statistik tabel, maka H_0 ditolak

- Jika statistik hitung < statistik tabel, maka H₀ diterima

Diketahui t _{hitung} output adalah 0,554

Yang diperoleh dari perhitungan menggunakan rumus :

$$t = \frac{(\bar{x}_1 - \bar{x}_2)}{Sp \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Dimana :

$$Sp = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

Sedangkan statistik tabel dapat dicari pada tabel t :

- Tingkat signifikansi (α) adalah 5% atau tingkat kepercayaan 95%.
- df (*degree of freedom*) atau derajat kebebasan adalah n₁+n₂ 2 atau
 10 + 8 2 = 16.
- Uji dilakukan dua sisi atau dua ekor karena akan diketahui apakah rata-rata IP laki-laki dengan IP perempuan sama atau tidak. Perlunya dua sisi dapat diketahui pula dari output SPSS yang menyatakan 2 tailed.

Dari tabel t, didapat angka (t = $\alpha/2$) = 2,120

Keputusan :

Oleh karena t $_{hitung}$ terletak pada daerah H $_0$ diterima, maka dapat disimpulkan bahwa Rata-rata Indek Prestasi antara laki-laki dan perempuan adalah sama

2) Berdasarkan perbandingan nilai probabilitas (Sig.)

- Jika probabilitas > 0,05, maka H₀ diterima

- Jika probabilitas < 0,05, maka H₀ ditolak

Keputusan :

Terlihat bahwa t hitung adalah 0,554 dengan probabilitas 0,587

Oleh karena probabilitas 0,587 > 0,05, maka H_0 diterima, maka dapat disimpulkan bahwa Rata-rata Indek Prestasi antara laki-laki dan perempuan adalah sama

Uji Analisis Varian Satu Jalan (One Way ANOVA)

Prosedur uji hipotesis ini disebut analisis variansi, disingkat Anava (Analisis Varian) atau Anova (*Analysis of Variance*). Disebut analisis variansi, karena pada prosedur ini kita melihat variasi-variasi yang muncul karena adanya beberapa perlakuan (*treatment*) untuk menyimpulkan ada tidaknya perbedaan rata-rata pada k populasi tersebut.

Persyaratan Analisis:

- 1. Sampel diambil secara random dari populasi
- 2. Masing-masing populasi saling independen dan masing-masing data amatan saling independen di dalam kelompoknya

- 3. Setiap populasi berdistribusi normal
- 4. Populasi-populasi mempunyai variansi yang sama (homogen)

Contoh :

Seorang peneliti melakukan penelitian tentang pengaruh jarak tanam terhadap produksi tanaman tomat. Maka dilakukan penelitian dengan menggunakan lima macam jarak tanam : A = 15 x 15 cm, B = 15 x 20 cm, C = 15 x 25 cm dan D = 20 x 20 cm dan diperoleh datanya sebagai berikut (dalam kwintal/ha) :

Dorlakuan			Ulangan		
Perlakuali	1	2	3	4	5
A	5,2	6,2	5,9	5,7	6,5
В	5,7	6,1	6,2	7,5	6,2
С	6,0	7,3	6,5	7,1	7,5
D	5,1	8,5	9,2	7,3	8,7

Dengan menggunakan taraf signifikansi 5% maka kita uji hipotesis yang menyatakan bahwa tidak ada beda produksi tomat dengan menggunakan empat macam jarak tanam. Diasumsikan data produksi tomat menyebar normal dengan ragam sama.

Langkah-langkah :

- Buka lembar kerja baru pada program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom Name, ketik Produksi pada baris pertama dan Perlakuan pada baris kedua

- Pada kolom *Decimals*, ketik 1 untuk baris pertama dan ketik 0 untuk baris kedua karena data berupa kategori
- Pada kolom *Label,* Ketik **Produksi Tomat** untuk baris pertama dan **Perlakuan** untuk baris kedua
- Pada baris kedua, pada kolom Values, klik mouse pada kotak kecil di kanan sel. Pada kotak isian Value ketik 1, pada kotak isian Value label, ketik Jarak A, klik tombol <u>A</u>dd, isi kembali untuk value ketik 2, pada Velue label ketik Jarak B, klik tombol <u>A</u>dd, klik lagi untuk value ketik 3, pada Velue label ketik Jarak C, klik tombol <u>A</u>dd, klik lagi untuk value, ketik 4, pada Velue label ketik Jarak D, klik tombol <u>A</u>dd, karena sudah selesai maka klik OK.
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti data di atas sesuai dengan variabelnya
- Setelah selesai simpan dengan nama Data_6
- Dari menu utama SPSS, pilih menu Analyze Compare Means One-Way ANOVA...

Factor H	Dependent List	OK.
Factor H	Pladuka Tomat (Plode	Paste
Factor H		Reset
Factor		Cancel
Pelakuan Pelaku	Factor.	Help

• Klik variabel **Produksi**, masukkan ke dalam *Dependent List*, kemudian klik variabel **Perlakuan**, masukkan ke *Factor*

- Klik pilihan Option, pada Statistiks, pilih Deskriptive dan Homogenity-ofvariance, klik Continue
- Klik Post-Hoc, dan pilihan yang ada pilih LSD , klik Continue
- Klik OK untuk mengakhiri perintah.

Maka akan ditampilkan outputnya sebagai berikut :

Oneway

Descriptives

Produksi	Tomat							
					95% Confidence Interval for			
					Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Jarak A	5	5.900	.495	.221	5.285	6.515	5.2	6.5
Jarak B	5	6.340	.680	.304	5.495	7.185	5.7	7.5
Jarak C	5	6.880	.618	.276	6.113	7.647	6.0	7.5
Jarak D	5	7.760	1.643	.735	5.720	9.800	5.1	9.2
Total	20	6.720	1.142	.255	6.186	7.254	5.1	9.2

Test of Homogeneity of Variances

Produksi Tomat

Levene			
Statistic	df 1	df 2	Sig.
3.036	3	16	.060

ANOVA

Produksi Tomat

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.620	3	3.207	3.386	.044
Within Groups	15.152	16	.947		
Total	24.772	19			

74

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Produksi Tomat

LSD

		Mean				
		Difference			95% Confide	ence Interval
(I) Perlakuan	(J) Perlakuan	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Jarak A	Jarak B	440	.615	.485	-1.745	.865
	Jarak C	980	.615	.131	-2.285	.325
	Jarak D	-1.860*	.615	.008	-3.165	555
Jarak B	Jarak A	.440	.615	.485	865	1.745
	Jarak C	540	.615	.393	-1.845	.765
	Jarak D	-1.420*	.615	.035	-2.725	115
Jarak C	Jarak A	.980	.615	.131	325	2.285
	Jarak B	.540	.615	.393	765	1.845
	Jarak D	880	.615	.172	-2.185	.425
Jarak D	Jarak A	1.860*	.615	.008	.555	3.165
	Jarak B	1.420*	.615	.035	.115	2.725
	Jarak C	.880	.615	.172	425	2.185

*. The mean difference is significant at the .05 level.

Interpretasi Output :

Output Bagian Pertama (Group Statistics)

Pada bagian pertama ini terlihat ringkasan statistik dari keempat sampel. Sebagai contoh adalah deskripsi dari kelompok Jarak A :

- Rata-rata produksi adalah 5,900
- Produk minimum = 5,2 dan maksimum = 6,5
- Standar deviasi = 0,495
- Standar Error (galat baku) = 0,221
- 95% selang kepercayaan antara 5,285 sampai 6,515

Demikian untuk data yang lain. Uji ANOVA adalah ingin melihat apakah rata-rata keempat sampel berasal dari populasi yang sama, dengan asumsi varians keempat sampel adalah sama.

Output Bagian Kedua (Test of Homogeneity of Varians)

Analisis ini bertujuan untuk menguji berlaku tidaknya asumsi untuk ANOVA,

yaitu apakah keempat sampel mempunyai varians yang sama.

Hipotesis :

H₀ = Keempat varians populasi adalah sama

H₁ = Keempat varians populasi adalah tidak sama

Pengambilan keputusan :

- Jika probabilitas > 0,05 maka H₀ diterima
- Jika probabilitas < 0,05 maka H_0 ditolak

Keputusan :

Terlihat bahwa Levene Test hitung adalah 3,036 dengan nilai probabilitas 0,060. Oleh karena probabilitas > 0,05, maka H_0 diterima atau keempat varians adalah sama.

Output Bagian Ketiga (ANOVA)

Setelah keempat varians terbukti sama, baru dilakukan uji ANOVA (Analysis of Varians) untuk menguji apakah keempat sampel mempunyai rata-rata (mean) yang sama.

Hipotesis :

- H₀ = Keempat rata-rata populasi adalah sama
- H₁ = Keempat rata-rata populasi adalah tidak sama

Pengambilan keputusan :

1) Berdasarkan perbandingan antara F hitung dengan F tabel

- Jika F _{hitung} > F _{tabel}, maka H₀ ditolak

- Jika F _{hitung} < F _{tabel}, maka H_0 diterima

Keputusan :

Terlihat F $_{hitung}$ dari output = 3,386 dan statistik tabel (F $_{tabel}$) dapat dicari pada tabel F :

- Tingkat signifikansi (α) adalah 5% atau kepercayaan 95%
- Numerator adalah (k 1) atau 4 1 = 3
- Denumerator adalah (N k) atau 20 4 = 16
- Maka dari tabel F diperoleh angka 3,24

Oleh karena F $_{hitung}$ terletak pada daerah H $_0$ ditolak, maka dapat disimpulkan bahwa rata-rata produksi dari keempat kelompok tersebut tidak sama atau berbeda nyata.

- 2) Berdasarkan perbandingan nilai probabilitas (Sig.)
 - Jika probabilitas > 0,05 maka H₀ diterima
 - Jika probabilitas < 0,05 maka H₀ ditolak

Keputusan :

Terlihat bahwa F _{hitung} adalah 3,386 dengan probabilitas 0,044. Oleh karena probabilitas 0,044 < 0,05, maka H_0 ditolak, yang berarti bahwa rata-rata produksi dari keempat kelompok tersebut tidak sama atau berbeda nyata.

Output Bagian Keempat (Pos Hok Test)

Setelah diketahui bahwa ada perbedaan yang signifikan diantara keempat kelompok produksi tomat, kemudian dilakukan uji lanjut ANOVA yaitu membahas kelompok mana saja yang berbeda dan kelompok mana yang tidak berbeda (sama). Uji yang digunakan adalah uji LSD (*Least Significant Difference*).

Sebagai contoh, lihat baris pertama yang menguji perbedaan rata-rata produksi dengan perlakuan jarak A dengan jarak.

- Pada kolom *Mean Difference* atau perbedaan rata-rata diperoleh angka
 -0,440, angka ini berasal dari Mean Jarak A Jarak B atau 5,90 6,340.
- Pada kolom 95% confidence interval, terlihat range perbedaan Mean tersebut berkisar antara -1,745 sampai 0,865.
- Uji signifikansi perbedaan Mean antara Jarak A dengan Jarak B :

Berdasarkan nilai probabilitas

- Jika probabilitas > 0,05 maka H₀ diterima
- Jika probabilitas < 0,05 maka H₀ ditolak

Keputusan :

Terlihat bahwa nilai probabilitas adalah 0,486 > 0,05, maka H_0 diterima, yang berarti bahwa tidak ada perbedaan rata-rata produksi tomat dengan perlakuan Jarak A dengan Jarak B.

Begitu seterusnya untuk analisis perbedaan yang lain selanjutnya.

Uji Analisis Varian Dua Jalan (Two Way ANOVA)

Jika pada One Way ANOVA hanya digunakan satu faktor maka untuk uji *Two Way ANOVA* terdapat dua faktor.

Contoh :

Peneliti akan menguji pengaruh pembelajaran kooperatif model STAD dan TGT ditinjau dari motivasi berprestasi terhadap prestasi belajar Biologi. Maka peneliti mengumpulkan data sebagai berikut :

Motivaci	Metode			
IVIOLIVASI	STAD	TGT		
	9,0	7,2		
	8,5	7,5		
Tinggi	8,0	7,0		
	7,5	7,5		
	7,0	7,0		
	6,5	6,6		
	7,7	7,1		
Sedang	8,4	6,9		
	7,5	7,0		
	7,0	7,5		
	6,9	7,4		
	6,8	6,6		
Rendah	7,5	6,5		
	7,0	6,0		
	6,7	7,0		

79

Dengan menggunakan taraf signifikansi 5% peneliti akan menguji hipotesis :

- a. Tidak ada perbedaan prestasi belajar berdasarkan model pembelajaran
- b. Tidak ada perbedaan prestasi belajar berdasarkan motivasi berprestasi
- c. Tidak ada interaksi antara model pembelajaran STAD dan TGT dengan motivasi berprestasi siswa

Langkah-langkah :

- Buka lembar kerja baru pada program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom Name, ketik Prestasi pada baris pertama, Metode pada baris kedua dan Motivasi pada baris ketiga
- Pada kolom *Decimals*, ketik 1 untuk baris pertama dan ketik 0 untuk baris kedua dan ketiga karena data berupa kategori
- Pada kolom Label, Ketik Prestasi Belajar untuk baris pertama, Metode Pembelajaran untuk baris kedua dan Motivasi Berprestasi untuk baris ketiga
- Pada baris kedua, pada kolom Values, klik mouse pada kotak kecil di kanan sel. Pada kotak isian Value ketik 1 Pada kotak isian Value label, ketik STAD, klik tombol <u>A</u>dd, selanjutnya isi kembali untuk value, ketik 2 dan pada Velue label ketik TGT, klik kembali tombol <u>A</u>dd, karena sudah selesai maka klik OK.
- Pada baris ketiga, pada kolom Values, klik mouse pada kotak kecil di kanan sel. Pada kotak isian Value ketik 1 Pada kotak isian Value label, ketik Rendah, klik tombol <u>A</u>dd, isi kembali untuk value, ketik 2 dan pada Velue label ketik Sedang, klik tombol <u>A</u>dd, selanjutnya isi kembali untuk

value, ketik **3** dan pada *Velue label* ketik **Tinggi**, klik kembali tombol <u>A</u>dd karena sudah selesai maka klik *OK*.

- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti data di atas sesuai dengan variabelnya
- Setelah selesai simpan dengan nama Data_7
- Dari menu utama SPSS, Klik menu Analyze General-Linier Model
- Dari serangkaian pilihan, pilih *Univariate...*, maka akan muncul kotak dialog Univariate
- Klik variabel **Prestasi**, masukkan ke *Dependent variable* atau variabel terikat yang akan diuji
- Klik Variabel **Metode** dan variabel **Motivasi**, masukkan ke kolom Fixed *Factor(s)*

Dependent Vandels Preutosi Betaan (pentul Faced Factor(s) Motivasi Besprenta ov Motivasi Besprenta ov	Model Contraits Plots Post Hoc .	E transmit Harge of Harden Facebold and Facility Astronomy (CFRA) methods methods methods methods hardender vorderen	Coupley Houses for and the sector of material Compare scare official Compare scare official
Rendom Prectorial	Options	Totalio Decembra dables Estense al ables an Estense al ables an Pasante estense Second confluent solar Typeliseco lond (8) 5	Humogeneity texts Typesed in lovel paid Research on lovel paid Leck of th General eventuality function ordenese sciences are ISIN Exercise Convents Denese (Denese)

 Klik pilihan Option, pada Display Means for: masukkan variabel Metode, Motivasi dan Metode*Motivasi, pada kolom Display Klik Descriptive statistics dan Homogeneity tests, Klik Continue. • Klik OK, untuk mengakhiri perintah

Maka akan muncul outputnya sebagai berikut :

Univariate Analysis of Variance

Between-Subjects Factors

		Value Label	N
Metode Pembelajaran	1	STAD	15
	2	TGT	15
Motivasi Berprestasi	1	Rendah	10
	2	Sedang	10
	3	Tinggi	10

Descriptive Statistics

Dependent Variable: Prestasi Belajar

Metode Pembelajaran	Motivasi Berprestasi	Mean	Std. Deviation	N
STAD	Rendah	6.980	.311	5
	Sedang	7.420	.719	5
	Tinggi	8.000	.791	5
	Total	7.467	.735	15
TGT	Rendah	6.700	.529	5
	Sedang	7.020	.327	5
	Tinggi	7.240	.251	5
	Total	6.987	.426	15
Total	Rendah	6.840	.435	10
	Sedang	7.220	.567	10
	Tinggi	7.620	.683	10
	Total	7.227	.639	30

Levene's Test of Equality of Error Variance's

Dependent Variable: Prestasi Belajar

F	df 1	df 2	Sig.
1.812	5	24	.149

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept+METODE+MOTIVASI+METODE
* MOTIVASI

Tests of Between-Subjects Effects

B openaent Tanabier	eetael Belaja				
	Type III Sum	Ir.		_	Ċ
Source	of Squares	at	Iviean Square		Sig.
Corrected Model	5.083 ^a	5	1.017	3.611	.014
Intercept	1566.741	1	1566.741	5565.689	.000
METODE	1.728	1	1.728	6.139	.021
MOTIVASI	3.043	2	1.521	5.404	.012
METODE * MOTIVASI	.312	2	.156	.554	.582
Error	6.756	24	.282		
Total	1578.580	30			
Corrected Total	11.839	29			

Dependent Variable: Prestasi Belajar

a. R Squared = .429 (Adjusted R Squared = .310)

Estimated Marginal Means

1. Metode Pembelajaran

Dependent Variable: Prestasi Belajar

			95% Confidence Interval	
Metode Pembelajaran	Mean	Std. Error	Lower Bound	Upper Bound
STAD	7.467	.137	7.184	7.749
TGT	6.987	.137	6.704	7.269

2. Motivasi Berprestasi

Dependent Variable: Prestasi Belajar

			95% Confidence Interval	
Motivasi Berprestasi	Mean	Std. Error	Lower Bound	Upper Bound
Rendah	6.840	.168	6.494	7.186
Sedang	7.220	.168	6.874	7.566
Tinggi	7.620	.168	7.274	7.966

3. Metode Pembelajaran * Motivasi Berprestasi

				95% Confide	ence Interval
Metode Pembelajaran	Motivasi Berprestasi	Mean	Std. Error	Lower Bound	Upper Bound
STAD	Rendah	6.980	.237	6.490	7.470
	Sedang	7.420	.237	6.930	7.910
	Tinggi	8.000	.237	7.510	8.490
TGT	Rendah	6.700	.237	6.210	7.190
	Sedang	7.020	.237	6.530	7.510
	Tinggi	7.240	.237	6.750	7.730

Dependent Variable: Prestasi Belajar

Interpretasi Output :

Output bagian pertama (Between-Subjects Factors)

Pada bagian ini ditampilkan hasil dari subjek-subjek yang diteliti dan dimasukkan dalam analisis data sesuai dengan faktor yang berbeda antar masing-masing subjek.

Output bagian kedua (Descriptive statistics)

Bagian ini menampilkan ringkasan statistiik deskriptif dari data yang dianalisis, berupa *mean, standar deviasi* dan jumlah data masing masing.

Output bagian ketiga (Levene's Test of Equality of Error Variances)

Uji Levene's ini dilakukan untuk menguji hipotesis yang menyatakan bahwa masing-masing varian dari variabel terikat (*dependent*) adalah sama (homogen). Dengan demikian perlu dirumuskan hipotesis yang akan diuji :

- H₀ : Varian variabel prestasi belajar adalah sama (homogen)
- H₁ : Varian variabel prestasi belajar adalah tidak sama (heterogen)

Pengambilan keputusan didasarkan dengan perbandingan nilai probabilitas yang dihasilkan, yaitu :

- Jika probabilitas > 0,05 maka H₀ diterima
- Jika probabilitas < 0,05 maka H₀ ditolak

Keputusan :

Dari output diatas diperoleh nilai probabilitas 0,149 > 0,05, maka H_0 diterima, yang berarti bahwa varian variabel prestasi belajar adalah sama (homogen) sehingga memenuhi persyaratan analisis varian. Dengan demikian proses analisis varian dapat dilanjutkan.

Output bagian keempat (Tests of Between-Subjects Effects)

Tests of Between-Subjects Effects dilakukan untuk menguji pengaruh (efek) yang ditimbulkan oleh masing-masing subjek. Kolom pertama menunjukkan faktor apa saja yang akan diuji, kolom kedua menunjukkan Jumlah Kuadrat (JK), kolom ketiga menunjukkan derajat kebebasan, kolom keempat menunjukkan rata-rata kuadrat (KT), kolom kelima menunjukkan F_{hitung} dan kolom keenam menunjukkan signifikansi/probabilitas.

- Menguji pengaruh metode pembelajaran terhadap prestasi belajar Hipotesis :
 - H₀ = Tidak ada pengaruh penggunaan metode pembelajaran (STAD dan TGT) terhadap prestasi belajar
 - H₁ = Ada pengaruh penggunaan metode pembelajaran (STAD dan TGT)
 terhadap prestasi belajar

Pengambilan keputusan :

a) Berdasarkan perbandingan antara F hitung dengan F tabel

- Jika F _{hitung} > F _{tabel}, maka H_0 ditolak

- Jika F hitung < F tabel, maka H₀ diterima

Terlihat F $_{hitung}$ dari output = 6,139 dan statistik tabel (F $_{tabel}$) dapat dicari pada tabel F :

- Tingkat signifikansi (α) adalah 5% atau kepercayaan 95%

- Numerator adalah (k 1) atau 2 1 = 1
- Denumerator adalah (n rc) atau 30 (2.3) = 24

Maka dari tabel F diperoleh angka 4,26

Keputusan :

Oleh karena F _{hitung} terletak pada daerah H₀ ditolak, maka dapat disim-pulkan bahwa ada pengaruh yang signifikan penggunaan metode pembelajaran (STAD dan TGT) terhadap prestasi belajar.

b) Berdasarkan perbandingan nilai probabilitas (Sig.)

- Jika probabilitas > 0,05 maka H₀ diterima
- Jika probabilitas < 0,05 maka H₀ ditolak

Keputusan :

Terlihat bahwa F hitung adalah 6,139 dengan probabilitas 0,021. Oleh karena probabilitas 0,021 < 0,05, maka H_0 ditolak, yang berarti bahwa ada pengaruh yang signifikan penggunaan metode pembelajaran (STAD dan TGT) terhadap prestasi belajar.

- Menguji pengaruh motivasi berprestasi terhadap prestasi belajar Hipotesis :
 - H₀ = Tidak ada pengaruh tingkat motivasi berprestasi terhadap prestasi belajar
 - H₁ = Ada pengaruh tingkat motivasi berprestasi terhadap prestasi belajar

Pengambilan keputusan :

- a) Berdasarkan perbandingan antara F hitung dengan F tabel
 - Jika F _{hitung} > F _{tabel}, maka H_0 ditolak

- Jika F $_{hitung}$ < F $_{tabel}$, maka H $_0$ diterima

Terlihat F $_{hitung}$ dari output = 5,404 dan statistik tabel (F $_{tabel}$) dapat dicari pada tabel F :

- Tingkat signifikansi (α) adalah 5% atau kepercayaan 95%
- Numerator adalah (k 1) atau 3 1 = 2
- Denumerator adalah (n rc) atau 30 (2.3) = 24

Maka dari tabel F diperoleh angka 3,403

Keputusan :

Oleh karena F_{hitung} terletak pada daerah H_0 ditolak, maka dapat disimpulkan bahwa ada pengaruh tingkat motivasi berprestasi terhadap prestasi belajar.

b) Berdasarkan perbandingan nilai probabilitas (Sig.)

- Jika probabilitas > 0,05 maka H₀ diterima
- Jika probabilitas < 0,05 maka H₀ ditolak

Keputusan :

Terlihat bahwa F_{hitung} adalah 5,404 dengan probabilitas 0,012. Oleh karena probabilitas 0,012 < 0,05, maka H₀ ditolak, yang berarti bahwa ada pengaruh yang signifikan tingkat motivasi berprestasi terhadap prestasi belajar.

 Menguji interaksi antara metode dengan motivasi terhadap prestasi belajar

Hipotesis :

 H₀ = Tidak ada interaksi antara metode dengan motivasi terhadap prestasi belajar H₁ = Ada interaksi antara metode dengan motivasi terhadap prestasi belajar

Pengambilan keputusan :

- a) Berdasarkan perbandingan antara F hitung dengan F tabel
 - Jika F _{hitung} > F _{tabel}, maka H₀ ditolak
 - Jika F hitung < F tabel, maka H₀ diterima

Terlihat F _{hitung} dari output = 0,554 dan statistik tabel (F _{tabel}) dapat dicari pada tabel F :

- Tingkat signifikansi (α) adalah 5% atau kepercayaan 95%
- Numerator adalah (r-1)(c-1) = 2
- Denumerator adalah (n rc) atau 30 (2.3) = 24

Maka dari tabel F diperoleh angka 3,403

Keputusan :

Oleh karena F $_{hitung}$ terletak pada daerah H $_0$ diterima, maka dapat disimpulkan bahwa tidak ada interaksi antara metode dengan motivasi terhadap prestasi belajar.

- b) Berdasarkan perbandingan nilai probabilitas (Sig.)
 - Jika probabilitas > 0,05 maka H₀ diterima
 - Jika probabilitas < 0,05 maka H₀ ditolak

Keputusan :

Terlihat bahwa F _{hitung} adalah 0,554 dengan probabilitas 0,582. Oleh karena probabilitas 0,582 > 0,05, maka H_0 diterima, yang berarti bahwa tidak ada interaksi antara metode dengan motivasi terhadap prestasi belajar.

BAB VII	ANALISIS UJI KORELASI DAN REGRESI
	Analisis Korelasi
	 ✓ Analisis Regresi Linear Sedemana ✓ Analisis Regresi Linear Ganda

Terdapat banyak investigasi statistik yang tujuanutamanya adalah untuk menentukan apakah terdapat relasi (hubungan) antara dua atau lebih variabel. Jika relasi atau hubungan tersebut dapat dinyatakan dalam persamaan matematika, maka kita akan dapat menggunakan formula tersebut untuk melakukan prediksi. Dalam statistika, dua hal yang membicarakan permasalahan tersebut adalah analisis korelasi (*Correlation analysis*) dan analisis regresi (*Regression analysis*).

ANALISIS KORELASI

Analisis korelasi atau asosiasi merupakan studi yang membahas tentang derajat keeratan hubungan antar variabel yang dinyatakan dengan koefisien korelasi. Hubungan antara variabel X dan Y dapat bersifat :

- a. Posistif, artinya jika X naik, maka Y naik
- b. Negatif, artinya jika X naik, maka Y turun

Derajat hubungan biasanya dinyatakan dengan r, yang disebut dengan koefisien korelasi sampel yang merupakan penduga bagi koefisien populasi. Sedangkan r² disebut dengan koefisien determinasi (koefisien penentu). Kekuatan korelasi linear antara variabel X dan variabel Y disajikan dengan r_{xy}, didefinisikan dengan rumus :

$$r_{xy} = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{\left[n\Sigma x^2 - (\Sigma x)^2\right] n\Sigma y^2 - (\Sigma y)^2\right]}}$$

Formula tersebut disebut formula koefisien korelasi momen produk (*product moment*) Karl Pearson.

Arti angka korelasi :

Koefisien korelasi bernilai paling kecil -1 dan paling besar bernilai 1 jadi -1≤r≤1.

- Berkenaan dengan besaran angka, jika 0, maka tidak ada korelasi sama sekali dan jika korelasi 1 berarti korelasi sempurna. Yang berarti bahwa semakin mendekati 1 atau -1 maka hubungan antara dua variabel semakin kuat, sebaliknya jika nilai r mendekati 0 berarti hubungan dua variabel semakin lemah. Sebenarnya tidak ada ketentuan yang tepat mengenai apakah angka korelasi tertentu menunjukkan tingkat korelasi yang tinggi atau lemah. Namun dapat dijadikan pedoman sederhana, bahwa angka korelasi di atas 0,5 menunjukkan korelasi yang cukup kuat, sedangkan di bawah 0,5 korelasi lemah.
- Selain besarnya korelasi, tanda korelasi juga berpengaruh pada penafsiran hasil. Tanda negatif (-) pada output menunjukkan adanya arah berlawanan, sedangkan tanda positif (+) menunjukkan arah yang sama.

Dalam SPSS ada tiga metode korelasi sederhana (*Bivariate* correlation) diantaranya Pearson Correlation, Kendall's tau-b dan Spearman Correlation. Pearson Correlation digunakan untuk skala interval dan rasio, sedangkan Kendall's tau-b dan Spearman Correlation lebih cocok untuk skala ordinal.

Contoh :

Seorang peneliti ingin mengetahui apakah ada hubungan yang signifikan antara IQ, Motivasi dan prestasi belajar.

Prestasi	IQ	Motivasi
8,5	110	70
8,5	100	75
8,7	100	80
7,0	95	80
8,0	100	75
7,5	95	75
8,0	110	70
7,0	95	75
6,5	90	65
7,5	95	85

Langkah-langkah :

- Buka lembar kerja baru pada program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom Name, ketik Prestasi pada baris pertama, IQ pada baris kedua dan Motivasi pada baris ketiga
- Pada kolom *Decimals*, ketik 1 untuk baris pertama dan ketik 0 untuk baris kedua dan ketiga
- Pada kolom *Label,* Ketik **Prestasi Belajar** untuk baris pertama, **IQ** untuk baris kedua dan **Motivasi Belajar** untuk baris ketiga
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor

- Ketik datanya seperti data di atas sesuai dengan variabelnya
- Setelah selesai simpan dengan nama Data_8
- Dari menu utama SPSS, pilih menu Analyze Correlate Bivariate...
- Masukkan semua variabel pada kolom Variables
- Untuk kolom *Correlation coefficients*, pilih *Pearson*, pada *Test of Significance*, pilih *Two-tailed*
- Klik Flag Significant correlations
- Klik OK untuk mengakhiri perintah

Maka akan muncul output sebagai berikut :

Correlations

		Prestasi Belajar	IQ	Motivasi Belajar
Prestasi Belajar	Pearson Correlation	1.000	.732*	.156
	Sig. (2-tailed)		.016	.668
	Ν	10	10	10
IQ	Pearson Correlation	.732*	1.000	219
	Sig. (2-tailed)	.016		.543
	Ν	10	10	10
Motivasi Belajar	Pearson Correlation	.156	219	1.000
	Sig. (2-tailed)	.668	.543	
	Ν	10	10	10

Correlations

* Correlation is significant at the 0.05 level (2-tailed).

Interpretasi Output :

Pada output terlihat korelasi antara Prestasi dengan IQ yang menghasilkan angka 0,732. Angka tersebut menunjukkan kuatnya korelasi antara prestasi dengan IQ karena nilai r di atas 0,5. Sedangkan tanda ' + ' menunjukkan bahwa semakin tinggi IQ, maka akan semakin tinggi prestasinya, dan begitu sebaliknya.

Untuk korelasi antara Prestasi dengan Motivasi yang menghasilkan angka 0,156. Angka tersebut berarti kedua variabel mempunyai korelasi yang sangat lemah karena di bawah 0,5.

Sedangkan untuk korelasi antara IQ dengan Motivasi yang menghasilkan angka -0,219. Angka tersebut berarti kedua variabel mempunyai korelasi yang lemah karena di bawah 0,5. Tanda negatif (-) menunjukkan hubungan yang berlawanan. Jika IQ tinggi maka motivasi belajarnya rendah dan sebaliknya.

Signifikansi hasil Korelasi :

Setelah angka korelasi didapat, maka bagian kedua dari output SPSS adalah menguji apakah angka korelasi yang didapat benar-benar signifikan atau dapat digunakan untuk menjelaskan hubungan dua variabel.

Hipotesis :

 H_0 = Tidak ada korelasi antara dua variabel atau angka korelasi = 0

 H_1 = Ada korelasi antara dua variabel atau angka korelasi $\neq 0$

Pengambilan keputusan :

- a. Berdasarkan nilai probabilitas
 - Jika probabilitas > 0,05 maka H₀ diterima
 - Jika probabilitas < 0,05 maka H₀ ditolak

Keputusan :

Dari output di atas antara Prestasi dengan IQ diperoleh nilai probabilitas = 0,016 < 0,05, maka H₀ ditolak yang berarti bahwa ada hubungan (korelasi) yang signifikan antara Prestasi Belajar dengan IQ. Prestasi dengan Motivasi diperoleh nilai probabilitas = 0,668 > 0,05, maka H₀ diterima yang berarti bahwa tidak ada hubungan (korelasi) yang signifikan antara Prestasi Belajar dengan Motivasi Belajar. Dan Nilai probabilitas antara variabel IQ dengan Motivasi = 0,543 > 0,05, H₀ diterima yang berarti bahwa tidak ada hubungan (korelasi) yang signifikan antara IQ dengan Motivasi Belajar.

b. Berdasarkan tanda '* ' yang diberikan SPSS

Signifikan tidaknya korelasi dua variabel dapat juga dilihat dari adanya tanda '* ' pada pasangan data yang dikorelasikan (lihat pilihan *Flag Significant Correlation*) pada proses perhitungan korelasi di atas. Dari Output di atas hanya pasangan antara Prestasi Belajar dengan IQ yang diberi tanda *. Ini berarti hanya pasangan Prestasi Belajar dengan IQ yang mempunyai hubungan secara signifikan, sedangkan psangan yang lainnya ada hubungan tetapi hubungan yang tidak signifikan.

Analisis Regresi Linear Sederhana

Analisis regresi digunakan untuk memprediksi pengaruh variabel bebas terhadap variabel terikat. Bila skor variabel bebas diketahui maka skor variabel terikatnya dapat diprediksi besarnya. Analisis regresi juga dapat dilakukan untuk mengetahui linearitas variabel terikat dengan variabel bebasnya.

Analisis regresi linear sederhana terdiri dari satu variabel bebas (*predictor*) dan satu variabel terikat (*respon*), dengan persamaan :

 $\widehat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}\mathbf{X}$

Dimana :

$$a = \frac{(\Sigma Y)(\Sigma X^2) - (\Sigma X)(\Sigma XY)}{n\Sigma X^2 - (\Sigma X)^2}$$
$$b = \frac{n(\Sigma XY) - (\Sigma X)(\Sigma Y)}{n\Sigma X^2 - (\Sigma X)^2}$$

Sehingga :

$$\widehat{\mathbf{Y}} = \frac{(\sum \mathbf{Y})(\sum \mathbf{X}^2) - (\sum \mathbf{X})(\sum \mathbf{X}\mathbf{Y})}{n\sum \mathbf{X}^2 - (\sum \mathbf{X})^2} + \frac{n(\sum \mathbf{X}\mathbf{Y}) - (\sum \mathbf{X})(\sum \mathbf{Y})}{n\sum \mathbf{X}^2 - (\sum \mathbf{X})^2} \mathbf{X}$$

Contoh :

Peneliti ingin mengetahui apakah nilai Matematika berpengaruh secara signifikan terhadap nilai Fisika, maka peneliti mengumpulkan data secara acak dan dimasukkan ke dalam tabel sebagai berikut :

No.	Nilai Matematika	Nilai Fisika
1	60	80
2	45	69
3	50	71
4	60	85
5	50	80
6	65	82
7	60	89
8	65	93
9	50	76
10	65	86
11	45	71
12	50	69

Langkah-langkah :

- Buka lembar kerja baru pada program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom Name, ketik Matematika pada baris pertama dan Fisika pada baris kedua
- Pada kolom Decimals, ketik 0 untuk baris pertama dan baris kedua
- Pada kolom *Label*, Ketik **Nilai Matematika** untuk baris pertama dan **Nilai Fisika** untuk baris
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti data di atas sesuai dengan variabelnya
- Setelah selesai simpan dengan nama Data_9
- Dari menu utama SPSS, pilih menu Analyze regression Linear... maka akan muncul kotak dialog sebagai berikut :

- Masukkan variabel Nilai Fisika ke kolom Dependent, dan masukkan variabel Nilai Matematika ke kolom Independent(s)
- Pada *Method* kita pilih metode *Enter*
- Klik Statistics... klik pilihan Estimates dan Model Fit, kemudian klik Continue.
- Klik OK untuk mengakhiri perintah

Maka akan muncul output sebagai berikut :

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Nilai Matematik		Enter
	a	_	

a. All requested variables entered.

Model Summary

Madal	D	D. Course	Adjusted	Std. Error of
iviodei	ĸ	R Square	R Square	the Estimate
1	.862 ^a	.744	.718	4.32

a. Predictors: (Constant), Nilai Matematika

AN OV Ab

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	541.693	1	541.693	29.036	.000 ^a
	Residual	186.557	10	18.656		
	Total	728.250	11			

a. Predictors: (Constant), Nilai Matematika

b. Dependent Variable: Nilai Fisika

Coefficients^a

		Unstand Coeffi	dardized icients	Standardi zed Coefficien ts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	29.529	9.311		3.171	.010
	Nilai Matematika	.897	.167	.862	5.389	.000

a. Dependent Variable: Nilai Fisika

Interpretasi Output :

Output bagian pertama (Variables Entered/removed)

Tabel tersebut menjelaskan tentang variabel yang dimasukkan atau dibuang dan metode yang digunakan. Dalam hal ini variabel yang dimasukkan adalah variabel Nilai Matematika sebagai predictor dan metode yang digunaka adalah metode Enter.

Output bagian kedua (Model Summary)

Tabel tersebut menjelaskan besarnya nilai korelasi/hubungan (R) yaitu sebesar 0,862 dan menjelaskan besarnya prosentase pengaruh variabel bebas terhadap variabel terikat yang disebut koefisien determinasi yang merupakan hasil dari pengkuadratan R. Dari output tersebut diperoleh koefisien determinasi (R²) sebesar 0,744, yang mengandung pengertian bahwa pengaruh variabel bebas (Nilai matematika) terhadap variabel terikat (Nilai fisika) adalah sebesar 74,4%, sedangkan sisanya yaitu 25,6% dipengaruhi oleh variabel lain.

Output bagian ketiga (ANOVA)

Pada bagian ini untuk menjelaskan apakah ada pengaruh yang nyata (signifikan) variabel nilai Matematika (X) terhadap Nilai Fisika (Y) Dari Output terlihat bahwa F hitung = 29,036 dengan tingkat signifikansi/ probabilitas 0,000 < 0,05, maka model regresi dapat dipakai untuk memprediksi Nilai Fisika.

Output bagian keempat (Coefficients)

Pada tabel *Coefficients*, pada kolom B pada Constant (a) adalah 29,529, sedang Nilai Matematika (b) adalah 0,897, sehingga persamaan regresinya dapat ditulis :

 $\widehat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}\mathbf{X}$

= 29,529 + 0,897X

Koefisien b dinamakan koefisien arah regresi dan menyatakan perubahan rata-rata variabel Y untuk setiap perubahan variabel X sebesar satu satuan. Perubahan ini merupakan pertambahan bila b bertanda positif dan penurunan bila b bertanda negatif. Sehingga dari persamaan tersebut dapat diterjemahkan :

- a. Kostanta sebesar 29,529 menyatakan bahwa jika tidak ada Nilai matematika maka Nilai fisika sebesar 29,529.
- b. Koefisien regresi X1 sebesar 0,897 menyatakan bahwa setiap penambahan 1 Nilai matematika, maka akan Nilai fisika sebesar 0,897.

Selain menggambarkan persamaan regresi output ini juga menampilkan uji signifikansi dengan uji t yaitu untuk mengetahui apakah ada pengaruh yang nyata (signifikan) variabel Nilai matematika (X) sendiri (*partial*) terhadap Nilai fisika

Hipotesis :

- H₀ = Tidak ada pengaruh yang nyata (signifikan) variabel Nilai matematika
 (X) terhadap Nilai fisika
- H₁ = Ada pengaruh yang nyata (signifikan) variabel Nilai matematika (X)
 terhadap Nilai fisika (Y)

Dari output di atas dapat diketahui nilai t _{hitung} = 5,389 dengan probabilitas = 0,000 < 0,05, maka H₀ ditolak yang berarti bahwa ada pengaruh yang nyata (signifikan) variabel Nilai matematika (X) terhadap Nilai fisika (Y). Sehingga Nilai matematika (X1) dapat digunakan untuk memprediksi besarnya Nilai Fisika (Y).

Analisis Regresi Linear Ganda

Regresi linear berganda berguna untuk mencari pengaruh dua atau lebih variabel bebas (*predictor*) atau untuk mencari hubungan fungsional dua variabel predictor atau lebih terhadap variabel kriteriumnya. Dengan demikian regresi linear ganda (*Multiple regression*) digunakan untuk penelitian yang menyertakan beberapa variabel sekaligus. Rumus yang digunakan sama seperti pada regresi sederhana dengan disesuaikan dengan jumlah variabel yang diteliti. Rumus persamaan regresinya adalah sebagai berikut :

$$\overline{\mathbf{Y}}$$
 = a + b₁X₁ + b₂X₂ + b₃X₃ ... b_nX_n

Contoh :

Diduga bahwa besarnya nilai tergantung pada besarnya skor tes kecerdasan dan frekuensi membolos. Untuk keperluan tersebut, maka dilakukan pengamatan terhadap 12 orang siswa dengan mencatat frekuensi membolos, skor tes kecerdasan dan nilai ujian, dan diperoleh datanya sebagai berikut :

No	Skor Tes Kecerdasan	Frekuensi membolos	Nilai Ujian
NO.	(X ₁)	(X ₂)	(Y)
1	75	4	85
2	60	7	75
3	65	6	75
4	75	2	90
5	65	2	85
6	80	3	87
7	75	2	95
8	80	3	95
9	65	4	80
10	80	3	90
11	60	5	75
12	65	5	75
Langkah-langkah :

- Buka lembar kerja baru pada program SPSS
- Klik variable view pada SPSS Data editor
- Pada kolom *Name*, ketik **Skor Tes** pada baris pertama, Ketik **Membolos** pada baris kedua dan ketik **Nilai** pada baris ketiga
- Pada kolom *Decimals*, ketik 0 untuk baris pertama, baris kedua dan baris ketiga
- Pada kolom Label, Ketik Skor Tes Kecerdasan untuk baris pertama, Ketik Frekuensi Membolos pada baris kedua dan ketik Nilai Ujian pada baris ketiga
- Abaikan kolom yang lainnya
- Klik Data View, pada SPSS Data editor
- Ketik datanya seperti data di atas sesuai dengan variabelnya
- Setelah selesai simpan dengan nama Data_10
- Dari menu utama SPSS, pilih menu Analyze regression Linear... maka akan muncul kotak dialog sebagai berikut :

- Masukkan variabel Nilai Ujian ke kolom Dependent, dan masukkan variabel Skor Tes Kecerdasan dan Frekuensi Membolos ke kolom Independent(s)
- Pada *Method* kita pilih metode *Stepwise*
- Klik *Statistics…* klik pilihan *Estimates, Model Fit* dan *Deskriptive,* kemudian klik *Continue.*
- Klik OK untuk mengakhiri perintah

Maka akan muncul output sebagai berikut :

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
Nilai Ujian	83.92	7.77	12
Skor Tes Kecerdasan	70.42	7.82	12
Frekuensi Membolos	3.83	1.64	12

Correlations

		Nilai Ujian	Skor Tes Kecerdasan	Frekuensi Membolos
Pearson Correlation	Nilai Ujian	1.000	.860	848
	Skor Tes Kecerdasan	.860	1.000	666
	Frekuensi Membolos	848	666	1.000
Sig. (1-tailed)	Nilai Ujian	-	.000	.000
	Skor Tes Kecerdasan	.000		.009
	Frekuensi Membolos	.000	.009	
Ν	Nilai Ujian	12	12	12
	Skor Tes Kecerdasan	12	12	12
	Frekuensi Membolos	12	12	12

Model	Variables Entered	Variables Removed	Method
1	Skor Tes Kecerdasa n		Stepwise (Criteria: Probabilit y-of-F-to-e nter <= .050, Probabilit y-of-F-to-r emov e >= .100).
2	Frekuensi Membolos		Stepwise (Criteria: Probabilit y-of-F-to-e nter <= .050, Probabilit y-of-F-to-r emov e >= .100).

Variables Entered/Removed

a. Dependent Variable: Nilai Ujian

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.860 ^a	.740	.714	4.16
2	.936 ^b	.876	.849	3.02

a. Predictors: (Constant), Skor Tes Kecerdasan

b. Predictors: (Constant), Skor Tes Kecerdasan, Frekuensi Membolos

ANOVA^c

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	492.044	1	492.044	28.463	.000 ^a
	Residual	172.873	10	17.287		
	Total	664.917	11			
2	Regression	582.609	2	291.305	31.853	.000 ^b
	Residual	82.307	9	9.145		
	Total	664.917	11			

a. Predictors: (Constant), Skor Tes Kecerdasan

b. Predictors: (Constant), Skor Tes Kecerdasan, Frekuensi Membolos

c. Dependent Variable: Nilai Ujian

Coeffi ci ents^a

		Unstand Coeff	dardized icients	Standardi zed Coefficien ts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	23.703	11.350		2.088	.063
	Skor Tes Kecerdasan	.855	.160	.860	5.335	.000
2	(Constant)	55.780	13.117		4.253	.002
	Skor Tes Kecerdasan	.527	.156	.530	3.371	.008
	Frekuensi Membolos	-2.344	.745	495	-3.147	.012

a. Dependent Variable: Nilai Ujian

Excluded Variables^b

						Collinearit
						У
					Partial	Statistics
Model		Beta In	t	Sig.	Correlation	Tolerance
1	Frekuensi Membolos	495 ^a	-3.147	.012	724	.556

a. Predictors in the Model: (Constant), Skor Tes Kecerdasan

b. Dependent Variable: Nilai Ujian

Interpretasi Output :

Output bagian pertama (Descriptive Statistics)

Pada bagian ini merupakan tabel yang menyajikan deskriptif data masingmasing variabel yang meliputi *Mean* (rata-rata), *Std. Deviation* (standar deviasi dan *N* (jumlah data)

Output bagian kedua (Corelatian)

Pada bagian ini merupakan matrik korelasi antara variabel Skor Tes Kecerdasan dengan Nilai ujian diperoleh r = 0,860 dengan probabilitas = 0,000 < 0,05, maka H₀ ditolak, yang berarti bahwa ada hubungan/korelasi yang signifikan antara Skor Tes Kecerdasan dengan Nilai Ujian. Variabel Frekuensi membolos dengan nilai ujian r = -0,848, tanda negatif menggambarkan hubungan yang berlawanan yang artinya semakin sering membolos, maka akan semakin kecil nilai yang diperoleh.

Output bagian ketiga (Variables Entered/removed)

Tabel tersebut menjelaskan tentang variabel yang dimasukkan atau dibuang dan metode yang digunakan. Dalam hal ini variabel yang dimasukkan adalah variabel Skor Tes Kecerdasan dan Frekuensi Membolos sebagai predictor dan metode yang digunakan adalah metode Stepwise.

Output bagian keempat (Model Summary)

Tabel tersebut pada model (1) untuk menjelaskan besarnya nilai korelasi/hubungan (R) antara Skor Tes Kecerdasan (X_1) dengan nilai ujian (Y)

yaitu sebesar 0,860 dan menjelaskan besarnya prosentase pengaruh variabel Skor Tes Kecerdasan terhadap nilai ujian yang disebut koefisien determinasi yang merupakan hasil dari pengkuadratan R. Dari output tersebut diperoleh koefisien determinasi (R²) pada model (1) sebesar 0,740, yang mengandung pengertian bahwa pengaruh variabel bebas (Skor Tes Kecerdasan) terhadap variabel terikat (Nilai Ujian) adalah sebesar 74%.

Pada model (2) untuk menjelaskan besarnya nilai korelasi (R) antara Skor Tes Kecerdasan (X₁) dan Frekuensi Membolos (X₂) terhadap Nilai Ujian (Y) yaitu sebesar 0,936 dan menjelaskan besarnya prosentase pengaruh variabel Skor Tes Kecerdasan dan Frekuensi Membolos terhadap Nilai Ujian yaitu sebesar 0,876 atau 87,6%. Sehingga dapat disimpulkan besarnya pengaruh Skor Tes Kecerdasan (X₁) terhadap Nilai Ujian (Y) sebesar 74%, dan pengaruh Frekuensi Membolos (X₂) terhadap Nilai Ujian (Y) = 13,6% (87,6% - 74%)

Output bagian kelima(ANOVA)

Pada bagian ini untuk menjelaskan apakah ada pengaruh yang nyata (signifikan) variabel Skor Tes Kecerdasan (X₁) dan Frekuensi Membolos (X₂) secara simultan (bersama-sama) terhadap Nilai Ujian (Y).

Dari Output pada model yang kedua terlihat bahwa F $_{hitung}$ = 31,853 dengan tingkat signifikansi/probabilitas 0,000 < 0,05, maka model regresi dapat dipakai untuk memprediksi Nilai Ujian.

Output bagian keenam(Coefficients)

Pada tabel *Coefficients*, pada kolom B pada Constant (a) adalah 55,780, Skor Tes Kecerdasan (b₁) adalah 0,527 dan Frekuensi Membolos (b₂) adalah -2,344. Sehingga persamaan regresinya dapat ditulis :

$$\widehat{\mathbb{Y}}$$
 = a + b₁X₁ + b₂X₂

= 55,780 + 0,527 X₁ - 2,344 X₂

Koefisien b dinamakan koefisien arah regresi dan menyatakan perubahan rata-rata variabel Y untuk setiap perubahan variabel X₁ sebesar satu satuan dan X₂ sebesar satu satuan. Perubahan ini merupakan pertambahan bila b bertanda positif dan penurunan bila b bertanda negatif. Sehingga dari persamaan tersebut dapat diterjemahkan :

- Kostanta sebesar 55,780 menyatakan bahwa jika tidak ada Nilai Skor Tes
 Kecerdasan (X₁) dan Frekuensi Membolos (X₂) Nilai ujian adalah sebesar
 55,780.
- Koefisien regresi X₁ sebesar 0,527 menyatakan bahwa setiap penambahan 1 skor tes kecerdasan, maka akan menambah nilai ujian sebesar 0,527
- Koefisien regresi X₂ sebesar -2,344 menyatakan bahwa setiap penambahan 1 kali membolos, maka Nilai ujian akan berkurang sebesar -2,233.

Selain menggambarkan persamaan regresi output ini juga menampilkan uji signifikansi dengan uji t yaitu untuk mengetahui apakah ada pengaruh yang

nyata (signifikan) variabel Skor Tes Kecerdasan (X₁) dan Frekuensi membolos (X₂) secara sendiri-sendiri (*partial*) terhadap Nilai Ujian (Y). Hipotesis :

- H₀ = Tidak ada pengaruh yang nyata (signifikan) variabel Skor Tes
 Kecerdasan dan Frekuensi membolos terhadap Nilai Ujian
- H₁ = Ada pengaruh yang nyata (signifikan) variabel Skor Tes Kecerdasan dan Frekuensi membolos terhadap Nilai Ujian

Keputusan :

Dari output di atas dapat diketahui variabel Skor Tes Kecerdasan nilai t_{hitung} = 3,371 dengan probabilitas = 0,008 < 0,05, maka H₀ ditolak yang berarti bahwa ada pengaruh yang nyata (signifikan) variabel Skor Tes Kecerdasan terhadap Nilai Ujian. Untuk variabel Frekuensi membolos nilai t_{hitung} = -3,147 dengan probabilitas = 0,012 < 0,05, maka H₀ ditolak yang berarti bahwa ada pengaruh yang nyata (signifikan) variabel Frekuensi membolos terhadap Nilai Ujian

DAFTAR PUSTAKA

Budiyono. 2004. Statistika untuk Penelitian. UNS Press. Surakarta.

- Damodar Gurajati, 2007. *Reliabilitas dan Validitas,* Edisi Ketiga. Pustaka Pelajar. Yogyakarta.
- Hartono. 2008. SPSS 16.0. Pustaka Pelajar. Yogyakarta.
- Kemas Ali Hanafiah. 2001. *Rancangan Percobaan, Teori dan Aplikasinya*, Raja Grafindo Persada. Jakarta.
- Saifudin Azwar.1997. Reliabilitas dan Validitas Pustaka Pelajar. Yogyakarta.
- Sihono Dwi Waluyo. 2001. *Statistika untuk Pengambilan Keputusan*. Galia Indonesia. Jakarta.
- Singgih Santoso. 2001. *Buku Latihan SPSS,* Edisi Kedua. PT. Elex Media Komputindo. Jakarta.
- Sudjana. 1992. Metode Statistik. Tarsito. Bandung.
- Sudjana. 1996. *Teknik Analisis Regresi dan Korelasi Bagi Para Peneliti*. Tarsito. Bandung.
- Suharsimi Arikunto. 2002. *Prosedur Penelitian, Suatu Pendekatan Praktik*. Rineka Cipta. Jakarta.

Sutrisno Hadi. 1989. Statistik, Jilid I. Andi Offset. Yogyakarta.

Sutrisno Hadi. 2002. Metodologi Research. Edisi 1. Andi Offset. Yogyakarta.

Tabel Nilai Kritik sebaran Z (Wilayah di Bawah Kurva Normal

60'0	0.5359	0.5753	0.6141	0.6517	0.6879	0.7224	0.7549	0.7852	0.8133	0.8389	0.8627	0.8830	0.9015	0.9177	0.9319	0.9443	0.9545	0.9633	0.9706	0.9767	0.9817	0.9857	0.9890	0.9916	0.9936	0.9952	0.9964	0.9974	0.9981	0.9986	066610	E66610	0.9995	16660	0.99986
0.08	0.5319	0.5714	0.6103	0.6480	0.6844	06120	0.7517	0.7823	0.8106	0.8365	0.8999	0.5510	0.8997	0.9162	0.9306	0.9429	0.9535	0.9625	0.9699	19260	0.9812	0.9854	0.9887	0.9913	0.9934	0.9951	0.9963	126670	0.9980	0.9986	0:9990	0.9990	0.9995	0.9996	246570
0.07	0.5279	0.5675	0.6064	09400	0.6806	0.7157	0.7486	0.7734	0.8078	0.8340	0.6577	0.8790	0.8980	0.9147	0.9292	0.9418	0.9525	0.9616	669610	0.9756	0.9808	0.9850	0.9884	0.9931	0.9932	0.9949	0.9962	2266.0	6/66/0	0.9985	0.9969	0.9992	\$666.0	0.9996	2666-0
90.0	0.5239	0.5636	0.6026	0.6406	0.6772	0.7123	0.7454	0.7764	0.8051	0.8315	0.8554	0.8770	0.8962	0.9131	0.9278	0.9406	0.9515	0.9608	0.9686	052670	6086.0	0.9846	0.9881	6066'0	1566.0	0.9948	0.9961	1//60	62660	0.9985	0.9969	0.9992	0.9994	0.99%6	19997
0.05	0.5199	0.5596	0.5987	0.6368 -	0.6736	0.7088	0.7422	0.777.04	0.9023	0.8289	0.8531	0.8749	0.8944	0.9115	0.9265	8666.0	0.9505	0.9599	0.9678	0.9744	0.9798	0.9842	0.9878	0.9906	676610	0.9946	0.9960	0.9970	8/66/0	0.9984	0.9989	266610	0.9994	0:9996	266630
90.04	05160	0,5557	0.5948	0.6331	002970	0.7054	0,7389	0.7704	0.7995	0.8264	0.8508	0.8729	0.8925	0.9099	152610	0.9382	0.9495	0.9591	129610	0.9738	0.9793	対第10	0.9875	0660	0.9927	0.9945	66660	0.9969	0.9977	1199941	0.9988	266670	166610	9666'0	0.9997
0.03	0.5120	0.5517	016570	0.6293	0.6664	0.7019	0.7357	0.7673	0.7967	0.8236	0.8485	0.8708	0.8907	0.9062	0.9236	0/6320	0.9484	0.9582	0.9664	0.9732	0.9738	108/0	1/186/0	106610	0.9925	0.9943	0.9957	89660	0.9977	0.9983	0.9988	1666.0	0.9994	0.99966	26667
0.02	02080	0.5478	0.5871	0.6255	0.6628	0.6965	1/26/20	0.7642	07939	0.8212	0.8461	0.8686	0.8888	0.9066	0.9222	0.9357	0.9474	0.9573	0.9656	0.97756	68260	0.9830	0.9868	0.9696	0.9922	0.9941	0.9956	0.9967	0.9976	0.9982	0.9987	166670	166610	0.9995	166610
0.01	0.5040	0.5438	0.5832	0.6217	165910	0.6950	162270	0.7611	0.7910	0.8186	0.8438	0.8665	0.8869	6906'0	0.9207	0.9345	0.9463	0.9564	6496'0	6126'0	0.9778	0.9826	0.9864	0.9896	02660	0.9940	0.9955	0:9966	0.9975	0.9982	0.9987	166610	0.9993	0.9995	266670
0.00	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.75883	0.8159	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	£179.0	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	1966'0	0.9987	06660	0.9993	0.9995	2666 0
	00	01	0.2	0.3	0.4	0.5	0.6	0.7	6.8	60	1.0	11	13	13	14	5.	1.0	17	1.8	1.9	2.0	21	22	23	2.4	25	-26	12	28	24	3.0	1	32	EE	34

			α		
ab	0.10	0.05	0.025	0.01	0,005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750

Tabel Nilai Kritik Sebaran t

11-2				db1				
<i>ab2</i>	1	2	3	4	5	6	7	
1	161.448	199.500	215.707	224.583	230.162	233.986	236.768	
2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	
3	10.128	9.552	9.277	9.117	9.013	8.941	8.887	
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500	
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	
17	4.451	3.592	3.592	3.197	2.965	2.810	2.699	2.614
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	
21	4.325	3.467	3.072	2.840	2.685	2.573	2.488	
22	4.301	3.443	3.049	2.817	2.661	2.549	2.464	
23	4.279	3.422	3.028	2.796	2.640	2.528	2.442	
24	4.260	3.403	3.009	2.776	2.621	2.508	2.423	
25	4.242	3.385	2.991	2.759	2.603	2.490	2.405	
26	4.225	3.369	2.975	2.743	2.587	2.474	2.388	
27	4.210	3.354	2.960	2.728	2.572	2.459	2.373	
28	4.196	3.340	2.947	2.714	2.558	2.445	2.359	
29	4.183	3.328	2.934	2.701	2.545	2.432	2.346	
30	4.171	3.316	2.922	2.690	2.534	2.421	2.334	

Tabel Nilai Kritik Sebaran F

	Та	raf		Та	raf		Та	raf
N	signif	ikansi	Ν	Signif	ikansi	Ν	Signif	ikansi
	5%	1%		5%	1%		5%	1%
3	0.997	0.999	27	0.381	0.487	55	0.266	0.345
4	0.950	0.990	28	0.374	0.478	60	0.254	0.330
5	0.878	0.959	29	0.367	0.470	65	0.244	0.317
6	0.811	0.917	30	0.361	0.463	70	0.235	0.306
7	0.754	0.874	31	0.355	0.456	75	0.227	0.296
8	0.707	0.874	32	0.349	0.449	80	0.220	0.286
9	0.666	0.798	33	0.344	0.442	85	0.213	0.278
10	0.632	0.765	34	0.339	0.436	90	0.207	0.270
11	0.602	0.735	35	0.334	0.430	95	0.202	0.263
12	0.576	0.708	36	0.329	0.424	100	0.195	0.256
13	0.553	0.684	37	0.325	0.418	125	0.176	0.230
14	0.532	0.661	38	0.320	0.413	150	0.759	0.210
15	0.514	0.641	39	0.316	0.408	175	0.148	0.194
16	0.497	0.623	40	0.312	0.403	200	0.138	0.181
17	0.482	0.606	41	0.308	0.396	300	0.113	0.148
18	0.468	0.590	42	0.304	0.393	400	0.096	0.128
19	0.456	0.575	43	0.301	0.389	500	0.088	0.115
20	0.444	0.561	44	0.297	0.384	600	0.080	0.105
21	0.433	0.549	45	0.294	0.380	700	0.074	0.097
22	0.423	0.543	46	0.291	0.276	800	0.070	0.091
23	0.413	0.526	47	0.288	0.272	900	0.065	0.086
24	0.404	0.515	48	0.284	0.368	1000	0.062	0.081
25	0.396	0.505	49	0.281	0.364			
26	0.388	0.496	50	0.297	0.361			

Tabel Nilai Kritik Sebaran r Product Moment